清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Differentiating Between Multiple Myeloma and Metastasis Subtypes of Lumbar Vertebra Lesions Using Machine Learning-Based Radiomics.

无线电技术 多发性骨髓瘤 列线图 接收机工作特性 放射科 脑转移 肿瘤科 骨转移
作者
Xing Xiong,Jia Wang,Su Hu,Yao Dai,Yu Zhang,Chunhong Hu
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:11: 601699- 被引量:6
标识
DOI:10.3389/fonc.2021.601699
摘要

Objective To determine whether machine learning based on conventional magnetic resonance imaging (MRI) sequences have the potential for the differential diagnosis of multiple myeloma (MM), and different tumor metastasis lesions of the lumbar vertebra. Methods We retrospectively enrolled 107 patients newly diagnosed with MM and different metastasis of the lumbar vertebra. In total 60 MM lesions and 118 metastasis lesions were selected for training classifiers (70%) and subsequent validation (30%). Following segmentation, 282 texture features were extracted from both T1WI and T2WI images. Following regression analysis using the least absolute shrinkage and selection operator (LASSO) algorithm, the following machine learning models were selected: Support-Vector Machine (SVM), K-Nearest Neighbor (KNN), Random Forest (RF), Artificial Neural Networks (ANN), and Naive Bayes (NB) using 10-fold cross validation, and the performances were evaluated using a confusion matrix. Matthews correlation coefficient (MCC), sensitivity, specificity, and accuracy of the models were also calculated. Results To differentiate MM and metastasis, 13 features in the T1WI images and 9 features in the T2WI images were obtained. Among the 10 classifiers, the ANN classifier from the T2WI images achieved the best performance (MCC = 0.605) with accuracy, sensitivity, and specificity of 0.815, 0.879, and 0.790, respectively, in the validation cohort. To differentiate MM and metastasis subtypes, eight features in the T1WI images and seven features in the T2WI images were obtained. Among the 10 classifiers, the ANN classifier from the T2WI images achieved the best performance (MCC = 0.560, 0.412, 0.449), respectively, with accuracy = 0.648; sensitivity 0.714, 0.821, 0.897 and specificity 0.775, 0.600, 0.640 for the MM, lung, and other metastases, respectively, in the validation cohort. Conclusions Machine learning-based classifiers showed a satisfactory performance in differentiating MM lesions from those of tumor metastasis. While their value for distinguishing myeloma from different metastasis subtypes was moderate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
29秒前
40秒前
笨笨亦凝发布了新的文献求助10
45秒前
小二郎应助笨笨亦凝采纳,获得10
49秒前
1分钟前
苻醉山完成签到,获得积分10
1分钟前
胖小羊完成签到 ,获得积分10
1分钟前
欢呼的冰兰完成签到,获得积分10
2分钟前
zxy完成签到 ,获得积分10
2分钟前
Only完成签到 ,获得积分10
2分钟前
智慧金刚完成签到 ,获得积分10
3分钟前
kbcbwb2002完成签到,获得积分10
3分钟前
lily完成签到 ,获得积分10
4分钟前
4分钟前
笨笨亦凝发布了新的文献求助10
4分钟前
wf完成签到,获得积分10
4分钟前
酷波er应助笨笨亦凝采纳,获得10
4分钟前
4分钟前
方白秋完成签到,获得积分10
4分钟前
机灵雨发布了新的文献求助30
4分钟前
5分钟前
5分钟前
JamesPei应助科研通管家采纳,获得10
5分钟前
5分钟前
juan完成签到 ,获得积分10
6分钟前
崔哥发布了新的文献求助10
6分钟前
慧姐完成签到,获得积分10
6分钟前
领导范儿应助慧姐采纳,获得10
7分钟前
back you up完成签到,获得积分0
7分钟前
王磊完成签到 ,获得积分10
7分钟前
崔哥完成签到,获得积分10
7分钟前
月儿完成签到 ,获得积分10
8分钟前
8分钟前
慧姐发布了新的文献求助10
8分钟前
开心完成签到 ,获得积分10
8分钟前
柯伊达完成签到 ,获得积分10
9分钟前
天天快乐应助dcm采纳,获得10
9分钟前
9分钟前
CipherSage应助WangY1263采纳,获得30
9分钟前
dcm发布了新的文献求助10
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782698
求助须知:如何正确求助?哪些是违规求助? 3328076
关于积分的说明 10234416
捐赠科研通 3043042
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799698
科研通“疑难数据库(出版商)”最低求助积分说明 758994