AttentionDTA: prediction of drug–target binding affinity using attention model

人工智能 计算机科学 二元分类 药物发现 水准点(测量) 均方误差 化学信息学 交叉验证 药品 机器学习 药物靶点 计算生物学 支持向量机 生物信息学 数学 药理学 生物 地理 统计 大地测量学
作者
Qichang Zhao,Fen Xiao,Mengyun Yang,Yaohang Li,Jianxin Wang
标识
DOI:10.1109/bibm47256.2019.8983125
摘要

In bioinformatics, machine learning-based prediction of drug-target interaction (DTI) plays an important role in virtual screening of drug discovery. DTI prediction, which have been treated as a binary classification problem, depends on the concentration of two molecules, the interaction between two molecules, and other factors. The degree of affinity between a drug molecule (such as a drug compound) and a target molecule (such as a receptor or protein kinase) reflects how tightly the drug binds to a particular target and is quantified by the measurement which can reflect more detailed and specific information than binary relationship. In this study, we proposed an end-to-end model, named AttentionDTA, based on deep learning, which associates attention mechanism to predict the binding affinity of DTI. The novelty in this work is to use attentional mechanisms to consider which subsequences in a protein are more important for a drug and which subsequences in a drug are more important for a protein when predicting its affinity. So that the representational ability of the model is stronger. The model uses one-dimensional Convolution Neural Networks (1D-CNNs) to extract the abstract information of drug and protein, and makes the drug and protein representations mutually adapt through the attention mechanisms. We evaluate our model on two established drug-target affinity benchmark datasets, Davis and KIBA. The model outperforms DeepDTA, a state-of-the-art deep learning method for drug-target binding affinity prediction, with better Mean Squared Error (MSE), Concordance Index (CI), rm 2 , and Area Under Precision Recall Curve (AUPR). Our results show that the attention-based model can effectively extract effective representations by calculating the weight of the representation between the drug and the protein. Finally, we visualize the attention weight. It proves our model can obtain the information of binding sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘晓倩发布了新的文献求助10
1秒前
完美世界应助Liu采纳,获得10
1秒前
orixero应助舒适路人采纳,获得10
1秒前
木西发布了新的文献求助10
2秒前
2秒前
2秒前
善良的导师完成签到,获得积分20
2秒前
2秒前
3秒前
乐枳发布了新的文献求助10
3秒前
修修修完成签到,获得积分10
4秒前
4秒前
zimu012发布了新的文献求助10
4秒前
共享精神应助坤坤采纳,获得10
4秒前
hongshiyi发布了新的文献求助10
5秒前
炙热的雨旋完成签到,获得积分10
5秒前
6秒前
6秒前
AliceWong完成签到,获得积分10
6秒前
7秒前
赘婿应助典雅的静采纳,获得10
7秒前
我不爱池鱼应助研友_Z33zkZ采纳,获得10
8秒前
万能图书馆应助研友_Z33zkZ采纳,获得10
8秒前
TTT完成签到,获得积分10
9秒前
不敢装睡发布了新的文献求助10
9秒前
修修修发布了新的文献求助10
9秒前
木西完成签到,获得积分20
10秒前
acc发布了新的文献求助10
11秒前
11秒前
笑点低的凝阳完成签到,获得积分10
11秒前
linxm7完成签到,获得积分10
11秒前
hehehe完成签到,获得积分10
12秒前
LY发布了新的文献求助10
12秒前
hongshiyi完成签到,获得积分20
13秒前
13秒前
糖糖糖发布了新的文献求助10
13秒前
13秒前
morry5007发布了新的文献求助10
13秒前
小葡完成签到,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786101
求助须知:如何正确求助?哪些是违规求助? 3331636
关于积分的说明 10251844
捐赠科研通 3046973
什么是DOI,文献DOI怎么找? 1672320
邀请新用户注册赠送积分活动 801243
科研通“疑难数据库(出版商)”最低求助积分说明 760059