A New Decomposition-Based Many-Objective Algorithm Based on Adaptive Reference Vectors and Fractional Dominance Relation

算法 数学优化 计算机科学 趋同(经济学) 子空间拓扑 进化算法 帕累托原理 数学 人工智能 经济增长 经济
作者
Xiaojun Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 152169-152181 被引量:8
标识
DOI:10.1109/access.2021.3126292
摘要

Decomposition-based evolutionary multi-objective algorithms (MOEAs) and many-objective algorithms (MaOEAs) divide a multi-objective problem (MOP) or a many-objective problem (MaOP) into several subproblems by using a set of predefined uniformly distributed reference vectors and can achieve good overall performance especially in maintaining population diversity. However, they encounter huge difficulties in addressing problems with irregular Pareto Fronts (PFs) since many reference vectors do not work during the searching process. To cope with this problem, this paper aims to improve an existing decomposition-based algorithm called reference vector guided evolutionary algorithm (RVEA) by designing an adaptive reference vectors adjustment strategy and strengthening the poor selection pressure. By adding the adaptive strategy, the predefined reference vectors will be dynamically adjusted according to the distribution of promising solutions with good overall performance and the subspaces where the PF lies may be further divided so as to contribute more to the searching process. Besides, the selection pressure with respect to convergence performance posed by RVEA is mainly from the length of normalized objective vectors and the metric is poor in evaluating the convergence performance of a solution with the increasing of objective size. Motivated by that, an improved angle-penalized distance (APD) method based on a newly proposed fractional dominance relation is developed to better distinguish solutions with sound convergence performance in each subspace. To investigate the performance of the proposed algorithm, extensive experiments are conducted to compare it with 5 state-of-the-art decomposition-based algorithms on 3-, 5-, 8-, 10- objective MaF1-MaF9. The results demonstrate that the proposed algorithm obtains the best overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温乘云完成签到,获得积分10
刚刚
Owen应助副掌门采纳,获得10
2秒前
cdhuang发布了新的文献求助10
3秒前
5秒前
zho应助孤独的蚂蚁采纳,获得10
6秒前
SciGPT应助如风随水采纳,获得10
6秒前
zho应助孤独的蚂蚁采纳,获得10
6秒前
小马甲应助圈圈采纳,获得10
6秒前
善学以致用应助HMONEY采纳,获得20
6秒前
星辰大海应助邱士萧采纳,获得10
8秒前
LJL发布了新的文献求助10
8秒前
Skywalker发布了新的文献求助20
9秒前
潜行者完成签到 ,获得积分10
9秒前
9秒前
MrCoolWu完成签到,获得积分10
10秒前
11秒前
12秒前
ohh完成签到 ,获得积分20
12秒前
舒心的绿草完成签到,获得积分10
13秒前
13秒前
田様应助璐璐采纳,获得10
14秒前
大伟完成签到,获得积分10
14秒前
14秒前
甜甜玫瑰应助机灵水卉采纳,获得10
15秒前
15秒前
常世万法仙君给常世万法仙君的求助进行了留言
16秒前
xuan完成签到,获得积分10
18秒前
发发发布了新的文献求助10
19秒前
22秒前
22秒前
23秒前
Lucas应助cc采纳,获得10
23秒前
8R60d8应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
小李老博应助科研通管家采纳,获得10
24秒前
25秒前
8R60d8应助科研通管家采纳,获得10
25秒前
8R60d8应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
小李老博应助科研通管家采纳,获得10
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807074
求助须知:如何正确求助?哪些是违规求助? 3351860
关于积分的说明 10356237
捐赠科研通 3067840
什么是DOI,文献DOI怎么找? 1684762
邀请新用户注册赠送积分活动 809899
科研通“疑难数据库(出版商)”最低求助积分说明 765767