Oil production forecasting using deep learning for shale oil wells under variable gas-oil and water-oil ratios

深度学习 油页岩 石油工程 人工神经网络 生产(经济) 页岩油 人工智能 石油生产 化石燃料 深水 环境科学 非常规油 原油 地质学 机器学习 计算机科学 工程类 废物管理 古生物学 海洋学 经济 宏观经济学
作者
Pedram Mahzari,Mehryar Emambakhsh,Cenk Temizel,Adrian Jones
出处
期刊:Petroleum Science and Technology [Taylor & Francis]
卷期号:40 (4): 445-468 被引量:16
标识
DOI:10.1080/10916466.2021.2001526
摘要

Deep learning approaches can be utilized for production forecasting in cases with complex production profiles. In this work, a deep learning algorithm was developed to use the pertinent production profiles such as oil rate, GOR, WOR to train the model. Using reservoir simulation, the deep learning model was first benchmarked using synthetic for two cases: (i) decline oil rate under constant GOR and (ii) decline oil rate under variable GOR. The architecture of the recurrent neural network was structured by one LSTM layer and four dense layers. Also, the public dataset for monthly production of shale wells published by the North Dakota Commissioner was also used. The model could capture the incremental oil rate rise when the GOR or WOR changed. Comparison between decline-curve and deep learning indicated that deep learning could be more accurate. The results manifested that, deep learning performance can be categorized into healthy, moderate, and poor based on the magnitude of training loss. Poor performance was obtained for the data with multiple sudden rises and falls of the oil production history. But for the majority of the wells, the healthy type of model was achieved with consistently low losses for training and validation datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Doreen发布了新的文献求助10
1秒前
Akim应助落寞明雪采纳,获得10
2秒前
冲冲冲完成签到 ,获得积分10
4秒前
5秒前
5秒前
茜你亦首歌完成签到,获得积分10
5秒前
yang应助Samuel采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得30
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
旧辞应助科研通管家采纳,获得10
9秒前
9秒前
CAOHOU应助科研通管家采纳,获得10
9秒前
Singularity应助科研通管家采纳,获得10
9秒前
CAOHOU应助科研通管家采纳,获得10
9秒前
CAOHOU应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
10秒前
充电宝应助lan采纳,获得10
10秒前
11秒前
上官若男应助吱吱吱采纳,获得10
12秒前
13秒前
XUUGO发布了新的文献求助10
13秒前
13秒前
完美的妙芹发布了新的文献求助200
14秒前
15秒前
出门右转发布了新的文献求助10
16秒前
jenningseastera应助uma采纳,获得10
16秒前
Miao完成签到,获得积分10
16秒前
852应助NNN采纳,获得10
17秒前
18秒前
18秒前
19秒前
wanci应助老将采纳,获得10
19秒前
huoshan发布了新的文献求助10
19秒前
林读书发布了新的文献求助10
19秒前
渣渣儿发布了新的文献求助10
20秒前
21秒前
善学以致用应助mia采纳,获得10
21秒前
Balance Man发布了新的文献求助10
22秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842011
求助须知:如何正确求助?哪些是违规求助? 3384120
关于积分的说明 10532608
捐赠科研通 3104441
什么是DOI,文献DOI怎么找? 1709629
邀请新用户注册赠送积分活动 823315
科研通“疑难数据库(出版商)”最低求助积分说明 773916