清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fault diagnosis and predictive maintenance for hydraulic system based on digital twin model

水力机械 断层(地质) 计算机科学 液压缸 离散化 实现(概率) 断层模型 控制工程 工程类 机械工程 数学分析 数学 地震学 地质学 电子线路 统计 电气工程
作者
Lintao Wang,Yuchong Liu,Hang Yin,Wei Sun
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:12 (6) 被引量:24
标识
DOI:10.1063/5.0098632
摘要

Hydraulic system has been the mainstream choice in large engineering equipment due to its smooth transmission, large bearing capacity, and small volume. However, because of the tightness and invisibility in hydraulic equipment, it is difficult to check and predict its faults. Common fault diagnosis and maintenance methods for the hydraulic system can be divided into two types: a signal analysis based on the mathematical model and a machine learning algorithm based on artificial intelligence. The first method can only diagnose specific faults based on the mathematical model, which is not universal, and the second one must rely on abundant history fault data, which is impossible to obtain in the early running stage. In order to address these questions, a digital twin framework is proposed which combines the virtual model with the real part to solve practical problems. As a concrete realization form of a five-dimension digital twin model, this framework provides a more feasible solution mode for fault diagnosis in the hydraulic system. Meanwhile, it expands the functions of faults prediction and digital model display. A case study of a hydraulic cylinder is used to illustrate the effectiveness of the proposed framework. The experimental result shows that this method can improve diagnosis accuracy for a hydraulic cylinder greatly compared with the non-interactive simulation model. Meanwhile, with the supplement of actual fault data, the diagnosis accuracy can be further improved, which has a certain growth ability and good applicability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助zjy采纳,获得10
1秒前
4秒前
邓代容完成签到 ,获得积分10
16秒前
22秒前
失眠的香蕉完成签到 ,获得积分10
22秒前
唐画发布了新的文献求助10
26秒前
唐画完成签到,获得积分10
32秒前
宇文雨文完成签到 ,获得积分10
36秒前
小潘完成签到,获得积分10
39秒前
Wen完成签到 ,获得积分10
46秒前
48秒前
53秒前
Shawn完成签到 ,获得积分10
55秒前
xrose完成签到 ,获得积分10
57秒前
maclogos完成签到,获得积分10
1分钟前
细心的代天完成签到 ,获得积分10
1分钟前
心静自然好完成签到 ,获得积分10
1分钟前
juju1234完成签到 ,获得积分10
1分钟前
666完成签到 ,获得积分10
1分钟前
5433完成签到 ,获得积分10
1分钟前
1分钟前
忘忧Aquarius完成签到,获得积分10
2分钟前
小刚关注了科研通微信公众号
2分钟前
fengzi完成签到 ,获得积分10
2分钟前
小刚发布了新的文献求助10
2分钟前
creep2020完成签到,获得积分10
2分钟前
mymEN完成签到 ,获得积分10
2分钟前
wwdd完成签到,获得积分10
2分钟前
从容芮应助马登采纳,获得50
2分钟前
mmyhn发布了新的文献求助10
2分钟前
简奥斯汀完成签到 ,获得积分10
2分钟前
Raul完成签到 ,获得积分10
2分钟前
NexusExplorer应助Tigher采纳,获得30
3分钟前
马登完成签到,获得积分10
3分钟前
深情安青应助qinghong采纳,获得10
3分钟前
3分钟前
如意2023完成签到 ,获得积分10
3分钟前
Tigher发布了新的文献求助30
3分钟前
Tigher完成签到,获得积分10
3分钟前
JJ完成签到 ,获得积分10
4分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837538
求助须知:如何正确求助?哪些是违规求助? 3379643
关于积分的说明 10510053
捐赠科研通 3099233
什么是DOI,文献DOI怎么找? 1707013
邀请新用户注册赠送积分活动 821381
科研通“疑难数据库(出版商)”最低求助积分说明 772606