带隙
光催化
镍
氧气
原子轨道
化学吸附
价(化学)
材料科学
价带
可见光谱
辐照
八面体
选择性
化学
结晶学
分析化学(期刊)
光电子学
晶体结构
物理化学
吸附
催化作用
物理
冶金
电子
有机化学
生物化学
核物理学
色谱法
量子力学
作者
Yong Chen,Yuanming Zhang,Wenjing Wang,Xiaoming Xu,Yang Li,Mengyang Du,Zhaosheng Li,Zhigang Zou
出处
期刊:Solar RRL
[Wiley]
日期:2022-03-29
卷期号:6 (7)
被引量:12
标识
DOI:10.1002/solr.202200099
摘要
It is difficult to design a new single‐component photocatalyst to simultaneously possess a bandgap small enough to absorb most of sunlight and strong redox ability to reduce CO 2 into value‐added chemical fuels. Herein, bandgap engineering of nickel vanadate compounds (Ni x V 2 O 5+ x , x = 1, 2, 3) is rationally designed to overcome the above challenge. Through changing the Ni:V ratio, the bandgap and band edge positions of nickel vanadates can be regulated, enabling Ni 2 V 2 O 7 and Ni 3 V 2 O 8 to reduce CO 2 in the presence of water under visible light irradiation that do not exist in NiV 2 O 6 . Ni 3 d orbitals of Ni 2 V 2 O 7 and Ni 3 V 2 O 8 replace V 3 d orbitals of NiV 2 O 6 and hybridize with O 2 p orbitals to form the valence band maximums, resulting in their negative shifts. Meanwhile, the relatively weaker effect of the crystal field in VO 4 tetrahedron over Ni 2 V 2 O 7 and Ni 3 V 2 O 8 results in less V 3 d split, thus making the conduction band edges to shift upward. In addition, higher concentration of oxygen vacancies over Ni 2 V 2 O 7 can further enhance its photocatalytic activity for CO 2 conversion into CO with nearly 100% selectivity by prolonging the lifetime of photogenerated carriers and improving the chemisorption of CO 2 .
科研通智能强力驱动
Strongly Powered by AbleSci AI