清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Accurate state of charge prediction for real-world battery systems using a novel dual-dropout-based neural network

辍学(神经网络) 对偶(语法数字) 人工神经网络 荷电状态 电池(电) 国家(计算机科学) 计算机科学 电荷(物理) 人工智能 工程类 机器学习 物理 算法 热力学 文学类 艺术 功率(物理) 量子力学
作者
Renzheng Li,Hui Wang,Haifeng Dai,Jichao Hong,Guangyao Tong,Xinbo Chen
出处
期刊:Energy [Elsevier BV]
卷期号:250: 123853-123853 被引量:35
标识
DOI:10.1016/j.energy.2022.123853
摘要

Accurate prediction of the state of charge is critical to the safety and durability of battery systems in electric vehicles. This paper proposes a novel multi-step SOC prediction method for real-world battery systems using the gated recurrent unit recurrent neural networks, which fully considers the influences of the environment and driving behaviors on the prediction performance. A novel dual-dropout method is proposed to prevent overfitting and optimize training efficiency. The first dropout is based on Pearson correlation analysis approach. It extracts five actual vehicle parameters that are strong and implicitly correlated with predictive SOC as model inputs, including recorded SOC, pack voltage, vehicle speed, temperature of probe, and brake pedal stroke value. A random dropout function is constructed as the second dropout to decrease the network density and improve efficiency, which is applied to the state information passing process of the model. Furthermore, the training samples are constructed by deriving the yearlong operation data of an electric taxi. The optimal model framework and hyperparameters are discussed and determined. Verified by six sets of randomly selected vehicular operation data, the results show that the proposed method can perform real-time 5-min SOC prediction with maximum error of 0.86%. • A novel multi-step SOC prediction method based on GRU-RNN is proposed. • A dual-dropout overfitting prevention method is explored by binning and random dropout. • A real-world dataset is derived from an electric taxi as the training and testing data. • Accurate multi-step real-time prediction of battery state of charge is obtained. • Stability, robustness, and superiority are verified using real-world operation data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
莫问今生完成签到,获得积分10
16秒前
woxinyouyou完成签到,获得积分0
26秒前
42秒前
沉静盼易发布了新的文献求助10
48秒前
陈陈陈介意完成签到,获得积分10
55秒前
烟花应助神猪无敌采纳,获得10
58秒前
大模型应助沉静盼易采纳,获得10
59秒前
HI完成签到 ,获得积分10
1分钟前
1分钟前
神猪无敌发布了新的文献求助10
1分钟前
Wang完成签到 ,获得积分20
1分钟前
小蚂蚁完成签到 ,获得积分10
1分钟前
ailemonmint完成签到 ,获得积分10
2分钟前
科研通AI5应助神猪无敌采纳,获得10
3分钟前
iman完成签到,获得积分10
3分钟前
3分钟前
神猪无敌发布了新的文献求助10
3分钟前
充电宝应助莫扎洋采纳,获得10
4分钟前
慕青应助科研通管家采纳,获得10
4分钟前
情怀应助科研通管家采纳,获得10
4分钟前
4分钟前
StonesKing完成签到,获得积分20
4分钟前
4分钟前
莫扎洋发布了新的文献求助10
4分钟前
乐观海云完成签到 ,获得积分10
4分钟前
莫扎洋完成签到 ,获得积分10
4分钟前
可爱的函函应助骆西西采纳,获得10
5分钟前
忧郁如柏完成签到,获得积分10
5分钟前
呆橘完成签到 ,获得积分10
5分钟前
小蘑菇应助骆西西采纳,获得10
5分钟前
wenbinvan完成签到,获得积分0
5分钟前
李爱国应助骆西西采纳,获得10
6分钟前
万能图书馆应助周楷航采纳,获得10
6分钟前
小珂完成签到,获得积分10
6分钟前
洁净的诗珊完成签到 ,获得积分10
6分钟前
6分钟前
两个榴莲完成签到,获得积分0
6分钟前
爱吃猫的鱼完成签到 ,获得积分10
6分钟前
大猫完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
National standards & grade-level outcomes for K-12 physical education 400
Research Handbook on Law and Political Economy Second Edition 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4806657
求助须知:如何正确求助?哪些是违规求助? 4121938
关于积分的说明 12752759
捐赠科研通 3856171
什么是DOI,文献DOI怎么找? 2123299
邀请新用户注册赠送积分活动 1145363
关于科研通互助平台的介绍 1037556