范德瓦尔斯力
极化(电化学)
各向异性
材料科学
光电子学
雷
光学
物理
凝聚态物理
分子物理学
化学
分子
量子力学
物理化学
作者
Wentao Wu,Zhijin Xu,Yunpeng Yao,Yi Liu,Guankui Long,Lina Li,Maochun Hong,Junhua Luo
出处
期刊:Small
[Wiley]
日期:2022-02-25
卷期号:18 (15)
被引量:19
标识
DOI:10.1002/smll.202200011
摘要
2D van der Waals materials are widely explored for in-plane polarized light detection owing to their distinctive in-plane anisotropic feature. However, most of these polarized light-sensitive devices root in their low symmetry of in-plane structure and work depending on external power sources, which greatly impedes the simplification of integrated devices and sustainable development. Bulk photovoltaic effect (BPVE), which separates photoexcited carriers via built-in electric field without an external power source and shows an angle-dependence on light polarization, is promising for self-powered polarized light detection to break through the restriction of in-plane anisotropy. Herein, a 2D lead-free van der Waals perovskite (Cl-PMA)2 CsAgBiBr7 (1, Cl-PMA = 4-Chlorobenzylamine) is successfully designed through the dimension reduction strategy. 1 exhibits BPVE with an open-circuited photovoltage up to ≈0.5 V. Driven by the BPVE, self-powered in-plane polarized light detection with a large polarization ratio of 1.3 is obtained for 1. As far as it is known, the first in-plane polarized light detection in hybrid perovskites based on BPVE is realized here. This work highlights the strategy of designing lead-free hybrid perovskite with BPVE and opens an avenue for exploiting in-plane highly sensitive polarized light detection in 2D van der Waals materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI