Task-Aware Effective Connectivity Modeling for Cognitive Function Prediction

作者
Wantong Zou,Yu Li,Xiang Hu,Xun Chen,Aiping Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-14
标识
DOI:10.1109/jbhi.2025.3644481
摘要

Effective connectivity (EC) derived from resting-state Functional Magnetic Resonance Imaging (rs fMRI) has emerged as a critical tool for deepening our understanding of brain function in both health and dis ease. However, most studies estimate EC on an individual basis, treating it as a hidden parameter within the model and requiring retraining the model for each subject. They often overlook the valuable population-level information and limit their generalizability. Additionally, EC is typically obtained independently of downstream tasks, reducing its capacity to effectively capture task-specific variations. To address these limitations, we propose a flexible Task-Aware Effective Connectivity (TAEC) model, designed to construct individualized, task-aware, and nonlinear causal brain networks without requiring subject-specific retraining. In this framework, a Causal Discovery Module (CDM) is introduced to capture the implicit neural representation of the EC by a spatial-temporal attention mechanism, producing the estimation of an individual EC. Subsequently, we propose a Task-Aware Graph Neural Network (GNN) Predictor, which incorporates a task-aware penalty to enable end-to-end prediction, enhancing task performance and the identification of task-dependent EC patterns. Extensive experiments on twelve cognitive tasks from the Human Connectome Project (HCP) dataset demonstrate that the proposed method achieves state-of-the-art performance, validating its effectiveness in task-aware effective connectivity modeling. Furthermore, the framework discovers discriminative and task-specific EC patterns, which offer additional in-sights into cognitive functions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助究究采纳,获得10
1秒前
李子发布了新的文献求助10
1秒前
拉拉发布了新的文献求助10
3秒前
天天快乐应助霸气靖雁采纳,获得10
3秒前
无语的海菡完成签到,获得积分10
3秒前
欣喜易形完成签到,获得积分10
4秒前
4秒前
李伟峰发布了新的文献求助10
4秒前
4秒前
小马甲应助wind2631采纳,获得10
7秒前
水净小小猪完成签到,获得积分10
7秒前
铭心发布了新的文献求助10
8秒前
8秒前
Doctor完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
丘比特应助szf采纳,获得10
11秒前
liche完成签到,获得积分10
12秒前
LX77bx完成签到,获得积分10
12秒前
李健应助Yning采纳,获得10
12秒前
苏打水完成签到,获得积分10
13秒前
nn完成签到,获得积分10
13秒前
Cordero完成签到,获得积分20
13秒前
踏实的兔子完成签到 ,获得积分10
13秒前
14秒前
杨涵发布了新的文献求助20
15秒前
xiaoliu发布了新的文献求助10
15秒前
ilihe应助zhangxin采纳,获得10
15秒前
JIAN完成签到 ,获得积分10
15秒前
Lijia_YAO完成签到,获得积分10
16秒前
科研通AI6应助WN采纳,获得10
16秒前
无聊的朋友完成签到 ,获得积分10
16秒前
彩色的弼发布了新的文献求助10
17秒前
17秒前
18秒前
开放世界完成签到,获得积分10
18秒前
19秒前
李大太阳发布了新的文献求助10
19秒前
Cordero发布了新的文献求助10
20秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621020
求助须知:如何正确求助?哪些是违规求助? 4705750
关于积分的说明 14933223
捐赠科研通 4764227
什么是DOI,文献DOI怎么找? 2551427
邀请新用户注册赠送积分活动 1513956
关于科研通互助平台的介绍 1474733