LC-MS/MS-assisted label-free SERS blood analysis by self-position plasmonic platform for tumor screening

化学 质谱法 拉曼光谱 色谱法 肺癌 计算机科学 医学 病理 物理 光学
作者
Min Fan,Kaiming Peng,Youliang Weng,Yuanmei Chen,Qiyi Zhang,Minqi Lin,Duo Lin,Yudong Lu,Shangyuan Feng
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:483: 149348-149348 被引量:19
标识
DOI:10.1016/j.cej.2024.149348
摘要

Label-free surface-enhanced Raman spectroscopy (SERS) blood analysis become an emerging technique in biomedical diagnosis. However, the poor signal homogeneity, the unsatisfied spectral features, and the low throughput of spectral analysis hinder its further clinical application. Herein, we illustrated a self-position SERS platform driven by the hydrophilic-hydrophobic features and combined with machine learning algorithm for precise lung cancer identification from benign group. To solve the problem that biomolecular information in SERS spectra partly lost caused by the formation of "protein crown", the SERS signals from serum components with different molecular weights were analyzed through the serum filtration process with a Nanosep tool, which results were confirmed by liquid chromatography with tandem mass spectrometry (LC-MS/MS) methods. Following that, robust machine learning classifiers were employed to explore the potential diagnostic information contained in the blood spectral data, achieving the exciting detection accuracy of 96.3% for identifying samples of the lung cancer from the of benign ones. This blood-SERS technology provides a promising way to overcome the clinical challenges in the identification of lung malignant and benign groups, and the functional SERS platform proposed in this work would further advance the application of blood-SERS technology in clinical cancer detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助baixue采纳,获得10
1秒前
mofei发布了新的文献求助10
4秒前
liangjc发布了新的文献求助50
5秒前
霍碧完成签到,获得积分10
5秒前
平淡纸飞机完成签到 ,获得积分10
6秒前
8秒前
xyy完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
11秒前
wanci应助YELLOW采纳,获得10
12秒前
苗小天发布了新的文献求助30
12秒前
mofei完成签到,获得积分10
12秒前
shiplec发布了新的文献求助10
14秒前
baixue发布了新的文献求助10
14秒前
科研通AI5应助幸福大白采纳,获得10
15秒前
鸿俦鹤侣完成签到,获得积分10
15秒前
yuwshuihen发布了新的文献求助10
16秒前
16秒前
17秒前
shiplec完成签到,获得积分20
18秒前
21秒前
乐生发布了新的文献求助10
22秒前
22秒前
桐桐应助33采纳,获得10
23秒前
Yan应助衔秋采纳,获得10
24秒前
25秒前
26秒前
XXX完成签到,获得积分10
26秒前
27秒前
yuwshuihen完成签到,获得积分10
28秒前
29秒前
30秒前
FashionBoy应助直率的问筠采纳,获得10
31秒前
33秒前
34秒前
eve发布了新的文献求助10
35秒前
lm发布了新的文献求助10
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4812452
求助须知:如何正确求助?哪些是违规求助? 4125175
关于积分的说明 12764468
捐赠科研通 3862096
什么是DOI,文献DOI怎么找? 2125774
邀请新用户注册赠送积分活动 1147348
关于科研通互助平台的介绍 1041125