Ct-based intratumoral and peritumoral radiomics for predicting prognosis in osteosarcoma: A multicenter study

医学 一致性 无线电技术 队列 骨肉瘤 内科学 回顾性队列研究 总体生存率 肿瘤科 放射科 核医学 病理
作者
Qiushi Su,Ning Wang,Bingyan Wang,Yanmei Wang,Zhengjun Dai,Xia Zhao,Xiaoli Li,Qiyuan Li,Guangjie Yang,Pei Nie
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:172: 111350-111350 被引量:3
标识
DOI:10.1016/j.ejrad.2024.111350
摘要

Abstract

Purpose

To evaluate the performance of CT-based intratumoral, peritumoral and combined radiomics signatures in predicting prognosis in patients with osteosarcoma.

Methods

The data of 202 patients (training cohort:102, testing cohort:100) with osteosarcoma admitted to the two hospitals from August 2008 to February 2022 were retrospectively analyzed. Progression free survival (PFS) and overall survival (OS) were used as the end points. The radiomics features were extracted from CT images, three radiomics signatures(RS intratumoral, RS peritumoral, RS combined)were constructed based on intratumoral, peritumoral and combined radiomics features, respectively, and the radiomics score (Rad-score) were calculated. Kaplan-Meier survival analysis was used to evaluate the relationship between the Rad-score with PFS and OS, the Harrell's concordance index (C-index) was used to evaluate the predictive performance of the radiomics signatures.

Results

Finally, 8, 6, and 21 features were selected for the establishment of RS intratumoral, RS peritumoral, and RS combined, respectively. Kaplan-Meier survival analysis confirmed that the Rad-scores of the three RSs were significantly correlated with the PFS and OS of patients with osteosarcoma. Among the three radiomics signatures, RS combined had better predictive performance, the C-index of PSF prediction was 0.833 in the training cohort and 0.814 in the testing cohort, the C-index of OS prediction was 0.796 in the training cohort and 0.764 in the testing cohort.

Conclusions

CT-based intratumoral, peritumoral and combined radiomics signatures can predict the prognosis of patients with osteosarcoma, which may assist in individualized treatment and improving the prognosis of osteosarcoma patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Xuan完成签到,获得积分10
3秒前
mzm发布了新的文献求助10
4秒前
蔡从安发布了新的文献求助10
6秒前
晨心完成签到,获得积分10
8秒前
科目三应助真实的一鸣采纳,获得10
8秒前
mzm关闭了mzm文献求助
9秒前
彭于晏应助aaa采纳,获得10
10秒前
11秒前
星星完成签到,获得积分10
16秒前
Mask完成签到,获得积分10
17秒前
pangpang完成签到,获得积分10
20秒前
21秒前
好吃的烤雞完成签到,获得积分10
22秒前
落寞溪灵完成签到 ,获得积分10
23秒前
aaa发布了新的文献求助10
25秒前
jenningseastera应助哈利波特采纳,获得10
26秒前
wrr完成签到,获得积分10
28秒前
不会吹口哨完成签到,获得积分10
33秒前
Kavin完成签到,获得积分10
34秒前
Young完成签到 ,获得积分10
35秒前
Dlan完成签到,获得积分10
36秒前
dreamsci完成签到 ,获得积分10
38秒前
岳小龙完成签到 ,获得积分10
38秒前
科研通AI2S应助loin采纳,获得10
40秒前
Zp关闭了Zp文献求助
41秒前
调皮的蓝天完成签到 ,获得积分10
41秒前
111111发布了新的文献求助10
42秒前
科研通AI5应助逢考必过采纳,获得10
44秒前
853225598完成签到,获得积分10
45秒前
sunglow11完成签到,获得积分0
46秒前
达da完成签到,获得积分10
46秒前
尚可完成签到 ,获得积分10
46秒前
田様应助prim采纳,获得10
46秒前
世外完成签到,获得积分10
49秒前
pophoo完成签到,获得积分10
50秒前
陈龙完成签到,获得积分10
52秒前
逃之姚姚完成签到 ,获得积分10
55秒前
小超人完成签到 ,获得积分10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776116
求助须知:如何正确求助?哪些是违规求助? 3321700
关于积分的说明 10206716
捐赠科研通 3036792
什么是DOI,文献DOI怎么找? 1666450
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841