已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prostate lesion segmentation based on a 3D end-to-end convolution neural network with deep multi-scale attention

分割 计算机科学 人工智能 卷积神经网络 深度学习 背景(考古学) 模式识别(心理学) 人工神经网络 特征(语言学) 前列腺癌 计算机视觉 医学 癌症 古生物学 语言学 哲学 内科学 生物
作者
Enmin Song,Jiaosong Long,Guangzhi Ma,Hong Liu,Chih‐Cheng Hung,Renchao Jin,Peijun Wang,Wei Wang
出处
期刊:Magnetic Resonance Imaging [Elsevier BV]
卷期号:99: 98-109 被引量:13
标识
DOI:10.1016/j.mri.2023.01.015
摘要

Prostate cancer is one of the deadest cancers among human beings. To better diagnose the prostate cancer, prostate lesion segmentation becomes a very important work, but its progress is very slow due to the prostate lesions small in size, irregular in shape, and blurred in contour. Therefore, automatic prostate lesion segmentation from mp-MRI is a great significant work and a challenging task. However, the most existing multi-step segmentation methods based on voxel-level classification are time-consuming, may introduce errors in different steps and lead to error accumulation. To decrease the computation time, harness richer 3D spatial features, and fuse the multi-level contextual information of mp-MRI, we present an automatic segmentation method in which all steps are optimized conjointly as one step to form our end-to-end convolutional neural network. The proposed end-to-end network DMSA-V-Net consists of two parts: (1) a 3D V-Net is used as the backbone network, it is the first attempt in employing 3D convolutional neural network for CS prostate lesion segmentation, (2) a deep multi-scale attention mechanism is introduced into the 3D V-Net which can highly focus on the ROI while suppressing the redundant background. As a merit, the attention can adaptively re-align the context information between the feature maps at different scales and the saliency maps in high-levels. We performed experiments based on five cross-fold validation with data including 97 patients. The results show that the Dice and sensitivity are 0.7014 and 0.8652 respectively, which demonstrates that our segmentation approach is more significant and accurate compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助3434232采纳,获得30
1秒前
wxyaaa完成签到,获得积分10
3秒前
7秒前
7秒前
趣多多发布了新的文献求助30
10秒前
共享精神应助绝尘采纳,获得10
11秒前
Wang发布了新的文献求助10
13秒前
Akim应助TaoJ采纳,获得10
13秒前
乔心发布了新的文献求助10
18秒前
18秒前
zmy完成签到,获得积分10
19秒前
2微恙发布了新的文献求助20
19秒前
22秒前
科研通AI5应助iceice采纳,获得10
24秒前
TaoJ发布了新的文献求助10
27秒前
Boming发布了新的文献求助20
29秒前
科研通AI5应助俊逸湘采纳,获得10
29秒前
ding应助卫斯理采纳,获得10
29秒前
30秒前
100发布了新的文献求助10
31秒前
刘洋完成签到 ,获得积分10
35秒前
35秒前
hehe发布了新的文献求助10
36秒前
37秒前
情怀应助Tiam采纳,获得10
37秒前
Wang发布了新的文献求助10
40秒前
动漫大师发布了新的文献求助10
40秒前
40秒前
勤劳平彤完成签到,获得积分10
41秒前
42秒前
第七兵团司令完成签到,获得积分10
49秒前
49秒前
Azyyyy完成签到,获得积分10
50秒前
Ania99完成签到 ,获得积分10
53秒前
54秒前
54秒前
风旅关注了科研通微信公众号
55秒前
55秒前
搜集达人应助静好采纳,获得10
56秒前
56秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784673
求助须知:如何正确求助?哪些是违规求助? 3329836
关于积分的说明 10243563
捐赠科研通 3045204
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800480
科研通“疑难数据库(出版商)”最低求助积分说明 759416