UGS-1m: fine-grained urban green space mapping of 31 major cities in China based on the deep learning framework

鉴别器 计算机科学 发电机(电路理论) 比例(比率) 深度学习 领域(数学分析) 人工智能 空格(标点符号) 中国大陆 有效载荷(计算) 中国 地图学 电信 地理 功率(物理) 计算机安全 数学 网络数据包 考古 数学分析 物理 操作系统 量子力学 探测器
作者
Qian Shi,Mengxi Liu,Andrea Marinoni,Xiaoping Liu
出处
期刊:Earth System Science Data [Copernicus Publications]
卷期号:15 (2): 555-577 被引量:58
标识
DOI:10.5194/essd-15-555-2023
摘要

Abstract. Urban green space (UGS) is an important component in the urban ecosystem and has great significance to the urban ecological environment. Although the development of remote sensing platforms and deep learning technologies have provided opportunities for UGS mapping from high-resolution images (HRIs), challenges still exist in its large-scale and fine-grained application due to insufficient annotated datasets and specially designed methods for UGS. Moreover, the domain shift between images from different regions is also a problem that must be solved. To address these issues, a general deep learning (DL) framework is proposed for UGS mapping in the large scale, and fine-grained UGS maps of 31 major cities in mainland China are generated (UGS-1m). The DL framework consists of a generator and a discriminator. The generator is a fully convolutional network designed for UGS extraction (UGSNet), which integrates attention mechanisms to improve the discrimination to UGS, and employs a point-rending strategy for edge recovery. The discriminator is a fully connected network aiming to deal with the domain shift between images. To support the model training, an urban green space dataset (UGSet) with a total number of 4544 samples of 512×512 in size is provided. The main steps to obtain UGS-1m can be summarized as follows: (a) first, the UGSNet will be pre-trained on the UGSet in order to obtain a good starting training point for the generator. (b) After pre-training on the UGSet, the discriminator is responsible for adapting the pre-trained UGSNet to different cities through adversarial training. (c) Finally, the UGS results of 31 major cities in China (UGS-1m) are obtained using 2179 Google Earth images with a data frame of 7′30′′ in longitude and 5′00′′ in latitude and a spatial resolution of nearly 1.1 m. An evaluation of the performance of the proposed framework by samples from five different cities shows the validity of the UGS-1m products, with an average overall accuracy (OA) of 87.56 % and an F1 score of 74.86 %. Comparative experiments on UGSet with the existing state-of-the-art (SOTA) DL models proves the effectiveness of UGSNet as the generator, with the highest F1 score of 77.30 %. Furthermore, an ablation study on the discriminator fully reveals the necessity and effectiveness of introducing the discriminator into adversarial learning for domain adaptation. Finally, a comparison with existing products further shows the feasibility of the UGS-1m and the great potential of the proposed DL framework. The UGS-1m can be downloaded from https://doi.org/10.57760/sciencedb.07049 (Shi et al., 2023).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZJZALLEN完成签到 ,获得积分10
10秒前
11秒前
ycd完成签到,获得积分10
17秒前
务实鞅完成签到 ,获得积分10
21秒前
25秒前
钟声完成签到,获得积分0
25秒前
lopper发布了新的文献求助30
30秒前
动听的千萍完成签到 ,获得积分10
33秒前
zgt01完成签到 ,获得积分10
36秒前
发财小鱼完成签到 ,获得积分10
39秒前
开朗白开水完成签到 ,获得积分10
41秒前
lopper完成签到,获得积分20
44秒前
yy完成签到 ,获得积分10
45秒前
45秒前
Miyano0818发布了新的文献求助30
51秒前
clare完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
chenbin完成签到,获得积分10
1分钟前
1分钟前
Titi完成签到 ,获得积分10
1分钟前
1002SHIB完成签到,获得积分10
1分钟前
nihaolaojiu完成签到,获得积分10
1分钟前
贰鸟应助科研通管家采纳,获得20
1分钟前
cdercder应助科研通管家采纳,获得20
1分钟前
cdercder应助科研通管家采纳,获得20
1分钟前
sheetung完成签到,获得积分10
1分钟前
美好灵寒完成签到 ,获得积分10
1分钟前
guangshuang完成签到 ,获得积分10
1分钟前
自然的含蕾完成签到 ,获得积分10
1分钟前
YOLO完成签到 ,获得积分10
1分钟前
四叶草完成签到 ,获得积分10
1分钟前
roundtree完成签到 ,获得积分10
2分钟前
wefor完成签到 ,获得积分10
2分钟前
动听的千萍关注了科研通微信公众号
2分钟前
GankhuyagJavzan完成签到,获得积分10
2分钟前
fzh完成签到,获得积分10
2分钟前
yinlao完成签到,获得积分10
2分钟前
2分钟前
氟锑酸完成签到 ,获得积分10
3分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318422
捐赠科研通 3060628
什么是DOI,文献DOI怎么找? 1679712
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353