Assessment of soil quality in a heavily fragmented micro-landscape induced by gully erosion

环境科学 淤泥 地形 土壤质量 水文学(农业) 主成分分析 土壤科学 仰角(弹道) 腐蚀 堆积密度 数字高程模型 遥感 地质学 土壤水分 地貌学 岩土工程 数学 地理 统计 地图学 几何学
作者
Xin Chen,Xin Zhang,Yujie Wei,Shu Zhang,Chongfa Cai,Zhonglu Guo,Junguang Wang
出处
期刊:Geoderma [Elsevier]
卷期号:431: 116369-116369 被引量:18
标识
DOI:10.1016/j.geoderma.2023.116369
摘要

Soil quality degradation induced by erosion significantly inhibits sustainable development worldwide. For assessment of soil quality variations in an area with a heavily fragmented micro-landscape induced by gully erosion, 16 soil quality indicators were tested in laboratory settings and selected by principal component analysis (PCA). Meanwhile, soil quality prediction was conducted by the random forest (RF) model with its quality indicators derived from a 3-dimensional structure of the landscape (resolution, 0.01 m) obtained with an unmanned aerial vehicle (UAV). During RF modelling, 80 % of the Soil Quality Indices (SQIs) estimated by PCA were randomly selected as training data, and the remaining was used to validate the prediction result. The optimal SQIs were shown to include Mnd, bulk density, silt content, and cation exchange capacity (CEC). Additionally, the PCA-calculated SQI ranging from 0.33 to 0.85 decreased with decreasing elevation in the gully erosional area. Moreover, the spatial soil quality predicted by RF with a satisfied accuracy (R2 = 0.83 ∼ 0.86; RMSE = 0.03 ∼ 0.04) was comparable to PCA-calculated SQI. Overall, the spatial variation of soil quality in the gully was attributed to elevation (13.4 ∼ 24.1 %), slope gradient (8.0 ∼ 13.4 %), relief amplitude (9.8 ∼ 12.9 %), and terrain roughness index (10.3 ∼ 11.9 %). This study confirmed the excellent performance of RF for SQI prediction, and also indicated that ultra-high-resolution (0.01 m) terrain obtained by unmanned aerial vehicle (UAV) was a competent tool for soil quality assessment in areas with complicated microtopography and limited availability for soil sampling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
wangxiaobin完成签到 ,获得积分10
1秒前
DX完成签到 ,获得积分10
2秒前
犹豫雨珍完成签到,获得积分20
5秒前
Hanoi347应助Regulusyang采纳,获得10
6秒前
善学以致用应助姜姜姜姜采纳,获得10
7秒前
安嫔完成签到 ,获得积分10
7秒前
11完成签到,获得积分10
10秒前
yyzhou应助棍棍来也采纳,获得10
10秒前
Ddan发布了新的文献求助10
10秒前
脑洞疼应助yating采纳,获得50
13秒前
杨云完成签到,获得积分10
14秒前
健康的书雁完成签到,获得积分10
15秒前
袁宁宁静完成签到 ,获得积分10
15秒前
15秒前
吐司发布了新的文献求助10
18秒前
qrdd发布了新的文献求助10
20秒前
真实的路人完成签到,获得积分10
20秒前
姜姜姜姜发布了新的文献求助10
21秒前
浮游应助棍棍来也采纳,获得10
22秒前
24秒前
24秒前
重要冰薇完成签到,获得积分10
25秒前
26秒前
27秒前
Ruuo616完成签到 ,获得积分10
27秒前
迅速晋鹏发布了新的文献求助10
28秒前
28秒前
28秒前
滴答滴答滴完成签到,获得积分10
31秒前
RC_Wang发布了新的文献求助10
32秒前
昵称呢发布了新的文献求助10
32秒前
浮游应助棍棍来也采纳,获得10
33秒前
TOM发布了新的文献求助10
33秒前
33秒前
Hello应助迅速晋鹏采纳,获得10
34秒前
Jun完成签到 ,获得积分10
36秒前
36秒前
小胖完成签到 ,获得积分10
38秒前
614发布了新的文献求助20
39秒前
Plum22发布了新的文献求助10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496770
求助须知:如何正确求助?哪些是违规求助? 4594355
关于积分的说明 14444402
捐赠科研通 4526905
什么是DOI,文献DOI怎么找? 2480536
邀请新用户注册赠送积分活动 1465029
关于科研通互助平台的介绍 1437762