Neural network-based ductile fracture model for 5182-O aluminum alloy considering electroplastic effect in electrically-assisted processing

材料科学 流动应力 复合材料 应变率 可塑性 硬化(计算) 等温过程 断裂(地质) 拉伸试验 软化 极限抗拉强度 冶金 热力学 物理 图层(电子)
作者
Hongchun Shang,Songchen Wang,Lian Zhou,Yanshan Lou
出处
期刊:Engineering Fracture Mechanics [Elsevier BV]
卷期号:290: 109476-109476 被引量:1
标识
DOI:10.1016/j.engfracmech.2023.109476
摘要

Complex components made of 5182-O aluminum alloy are usually formed at high temperatures due to their low ductility at room temperature, and the advanced current assisted processing can achieve energy-saving, high-efficiency, and green production compared with traditional hot forming. In this study, the coupled effects of electrical pulse, temperature, strain rate, and strain on flow behavior and ductile fracture are comprehensively investigated by experiments and constitutive modeling. In order to investigate the influence of electroplastic effects in different stress states, shear, hole and notched specimens are tested by isothermal tensile test and electrically-assisted isothermal tensile test in temperature ranges from 300 to 423 K and strain rates from 0.001 to 0.1/s. The evolution of the microstructure is characterized by electron backscatter diffraction to reveal the mechanism of the experimental phenomenon observed. An artificial neural network model is developed to characterize the dynamic hardening behavior and ductile fracture, and further embedded in ABAQUS/Explicit for numerical simulation. The results show that the experimental results are highly non-linear and coupled for the flow curves. At the same temperature, electric pulses have an independent effect on suppressing the Portevin–Le Chatelier effect and can reduce the deformation resistance, thereby forming products at low energy. The non-monotonicity of the fracture loading paths obtained from the hybrid experimental–numerical analysis is affected by strain rate hardening, thermal softening and electroplasticity. The neural network-based plasticity model is calibrated and validated to describe fracture initiation considering stress state, current density, temperature and strain rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪玩家发布了新的文献求助10
刚刚
wellshine完成签到,获得积分10
1秒前
sure完成签到 ,获得积分20
1秒前
爆米花应助sdl采纳,获得10
2秒前
白白嫩嫩发布了新的文献求助60
2秒前
3秒前
烂漫草莓完成签到,获得积分10
3秒前
3秒前
田様应助单薄的雪兰采纳,获得10
3秒前
4秒前
senyusing完成签到,获得积分10
4秒前
负责的靖琪完成签到 ,获得积分10
4秒前
EmmaLin完成签到,获得积分10
4秒前
李爱国应助淡然的衣采纳,获得10
4秒前
卓荦完成签到,获得积分10
5秒前
5秒前
Windfall发布了新的文献求助10
5秒前
宝海青完成签到,获得积分10
5秒前
桐桐应助莫道桑榆晚采纳,获得10
7秒前
7秒前
7秒前
充电宝应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
冰魂应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
平常的班发布了新的文献求助10
9秒前
slim发布了新的文献求助10
9秒前
10秒前
一心扑在搞学术完成签到,获得积分10
11秒前
11秒前
执着的水杯完成签到,获得积分10
12秒前
123456发布了新的文献求助10
12秒前
zoobijmy发布了新的文献求助10
12秒前
田様应助锦程采纳,获得10
12秒前
旎旎完成签到,获得积分10
13秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828567
求助须知:如何正确求助?哪些是违规求助? 3370964
关于积分的说明 10465587
捐赠科研通 3090872
什么是DOI,文献DOI怎么找? 1700578
邀请新用户注册赠送积分活动 817907
科研通“疑难数据库(出版商)”最低求助积分说明 770588