Machine learning radiomics based on intra and peri tumor PA/US images distinguish between luminal and non-luminal tumors in breast cancers

无线电技术 医学 佩里 乳腺肿瘤 乳腺癌 放射科 癌症 内科学
作者
Sijie Mo,Hui Luo,Mengyun Wang,Guoqiu Li,Yao Kong,Hongtian Tian,Huaiyu Wu,Shuzhen Tang,Yinhao Pan,Youping Wang,Jinfeng Xu,Zhibin Huang,Fajin Dong
出处
期刊:Photoacoustics [Elsevier BV]
卷期号:40: 100653-100653 被引量:7
标识
DOI:10.1016/j.pacs.2024.100653
摘要

Purpose: This study aimed to evaluate a radiomics model using Photoacoustic/ultrasound (PA/US) imaging at intra and peri-tumoral area to differentiate Luminal and non-Luminal breast cancer (BC) and to determine the optimal peritumoral area for accurate classification. Materials and methods: From February 2022 to April 2024, this study continuously collected 322 patients at Shenzhen People’s Hospital, using standardized conditions for PA/US imaging of BC. Regions of interest were delineated using ITK-SNAP, with peritumoral regions of 2 mm, 4 mm, and 6 mm automatically expanded using code from the Pyradiomic package. Feature extraction was subsequently performed using Pyradiomics. The study employed Z-score normalization, Spearman correlation for feature correlation, and LASSO regression for feature selection, validated through 10-fold cross-validation. The radiomics model integrated intra and peri-tumoral area, evaluated by receiver operating characteristic curve(ROC), Calibration and Decision Curve Analysis(DCA). Results: We extracted and selected features from intratumoral and peritumoral PA/US images regions at 2 mm, 4 mm, and 6 mm. The comprehensive radiomics model, integrating these regions, demonstrated enhanced diagnostic performance, especially the 4 mm model which showed the highest area under the curve(AUC):0.898(0.78–1.00) and comparably high accuracy (0.900) and sensitivity (0.937). This model outperformed the standalone clinical model and combined clinical-radiomics model in distinguishing between Luminal and non-Luminal BC, as evidenced in the test set results. Conclusion: This study developed a radiomics model integrating intratumoral and peritumoral at 4 mm region PA/US model, enhancing the differentiation of Luminal from non-Luminal BC. It demonstrated the diagnostic utility of peritumoral characteristics, reducing the need for invasive biopsies and aiding chemotherapy planning, while emphasizing the importance of optimizing tumor surrounding size for improved model accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ayan发布了新的文献求助20
刚刚
刚刚
hhllhh完成签到 ,获得积分10
1秒前
在查找完成签到,获得积分10
1秒前
欠虐宝宝完成签到 ,获得积分10
1秒前
1秒前
优雅灵波完成签到,获得积分10
2秒前
vuluv完成签到,获得积分10
3秒前
自觉的书蝶完成签到,获得积分10
3秒前
烟花应助suohaiyun采纳,获得10
3秒前
北风发布了新的文献求助10
3秒前
4秒前
casset发布了新的文献求助10
5秒前
5秒前
xiaobai完成签到,获得积分10
5秒前
莫言发布了新的文献求助10
5秒前
思源应助飘逸慕梅采纳,获得10
5秒前
在查找发布了新的文献求助10
6秒前
6秒前
哈基咪发布了新的文献求助10
7秒前
lily完成签到,获得积分10
8秒前
8秒前
坚定的诗双完成签到,获得积分10
9秒前
木偶关注了科研通微信公众号
9秒前
vv发布了新的文献求助10
10秒前
浮游应助徐徐科研一百分采纳,获得10
10秒前
11秒前
12秒前
赖氨酸发布了新的文献求助10
14秒前
孙嘉兴完成签到,获得积分10
14秒前
14秒前
zhoupeng完成签到,获得积分10
16秒前
美味又健康完成签到 ,获得积分10
16秒前
Eazin完成签到,获得积分10
17秒前
Lucas应助LYN-66采纳,获得10
18秒前
顺心毛巾完成签到 ,获得积分10
18秒前
健壮的汽车完成签到,获得积分10
18秒前
嘻嘻应助casset采纳,获得10
18秒前
dadadaniu发布了新的文献求助10
18秒前
lwx完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308436
求助须知:如何正确求助?哪些是违规求助? 4453578
关于积分的说明 13857553
捐赠科研通 4341263
什么是DOI,文献DOI怎么找? 2383753
邀请新用户注册赠送积分活动 1378386
关于科研通互助平台的介绍 1346379