Resilience of weighted networks with dynamical behavior against multi-node removal

弹性(材料科学) 加权网络 脆弱性(计算) 节点(物理) 计算机科学 动力系统理论 动力系统(定义) 维数(图论) 状态空间 心理弹性 数学 复杂网络 拓扑(电路) 统计 物理 组合数学 计算机安全 量子力学 心理学 热力学 心理治疗师
作者
Ziwei Yuan,Changchun Lv,Dongli Duan,Zhiqiang Cai,Shubin Si
出处
期刊:Chaos [American Institute of Physics]
卷期号:34 (9) 被引量:1
标识
DOI:10.1063/5.0214032
摘要

In many real-world networks, interactions between nodes are weighted to reflect their strength, such as predator–prey interactions in the ecological network and passenger numbers in airline networks. These weighted networks are prone to cascading effects caused by minor perturbations, which can lead to catastrophic outcomes. This vulnerability highlights the importance of studying weighted network resilience to prevent system collapses. However, due to many variables and weight parameters coupled together, predicting the behavior of such a system governed by a multi-dimensional rate equation is challenging. To address this, we propose a dimension reduction technique that simplifies a multi-dimensional system into a one-dimensional state space. We applied this methodology to explore the impact of weights on the resilience of four dynamics whose weights are assigned by three weight assignment methods. The four dynamical systems are the biochemical dynamical system (B), the epidemic dynamical system (E), the regulatory dynamical system (R), and the birth–death dynamical system (BD). The results show that regardless of the weight distribution, for B, the weights are negatively correlated with the activities of the network, while for E, R, and BD, there is a positive correlation between the weights and the activities of the network. Interestingly, for B, R, and BD, the change in the weights of the system has little impact on the resilience of the system. However, for the E system, the greater the weights the more resilient the system. This study not only simplifies the complexity inherent in weighted networks but also enhances our understanding of their resilience and response to perturbations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助屿杓采纳,获得10
1秒前
英俊的铭应助DrWang采纳,获得10
1秒前
ice驳回了小二郎应助
1秒前
大刘完成签到 ,获得积分10
2秒前
孙文霞完成签到,获得积分10
2秒前
开心惜梦完成签到,获得积分10
2秒前
顺利毕业发布了新的文献求助10
3秒前
4秒前
TaoJ完成签到,获得积分10
5秒前
小二郎应助曈梦采纳,获得10
6秒前
amazing39完成签到,获得积分10
6秒前
休眠火山完成签到,获得积分10
7秒前
赘婿应助x1采纳,获得10
8秒前
win发布了新的文献求助10
9秒前
9秒前
yearluren完成签到,获得积分10
9秒前
10秒前
科研通AI6应助天马采纳,获得10
10秒前
猪猪hero应助沉默的西牛采纳,获得10
10秒前
顾矜应助沉默的西牛采纳,获得10
10秒前
10秒前
wyt发布了新的文献求助10
10秒前
真真发布了新的文献求助10
11秒前
12秒前
帅帅完成签到,获得积分10
12秒前
NexusExplorer应助反方向的钟采纳,获得10
13秒前
小猪发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
ww发布了新的文献求助10
14秒前
abc完成签到 ,获得积分10
14秒前
14秒前
16秒前
17秒前
17秒前
Luna_aaa发布了新的文献求助10
19秒前
wzhang发布了新的文献求助10
19秒前
852应助合适妙海采纳,获得10
20秒前
Pattis完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626224
求助须知:如何正确求助?哪些是违规求助? 4712038
关于积分的说明 14957777
捐赠科研通 4781037
什么是DOI,文献DOI怎么找? 2554185
邀请新用户注册赠送积分活动 1515948
关于科研通互助平台的介绍 1476219