A vision transformer for fine-grained classification by reducing noise and enhancing discriminative information

判别式 计算机科学 安全性令牌 人工智能 模式识别(心理学) 变压器 班级(哲学) 特征(语言学) 滤波器(信号处理) 噪音(视频) 机器学习 计算机视觉 图像(数学) 工程类 电压 语言学 哲学 计算机安全 电气工程
作者
Zi-Chao Zhang,Zhen-Duo Chen,Yongxin Wang,Xin Luo,Xin-Shun Xu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:145: 109979-109979 被引量:11
标识
DOI:10.1016/j.patcog.2023.109979
摘要

Recently, several Vision Transformer (ViT) based methods have been proposed for Fine-Grained Visual Classification (FGVC). These methods significantly surpass existing CNN-based ones, demonstrating the effectiveness of ViT in FGVC tasks. However, there are some limitations when applying ViT directly to FGVC. First, ViT needs to split images into patches and calculate the attention of every pair, which may result in heavy noise calculation during the training phase and unsatisfying performance when handling fine-grained images with complex backgrounds and small objects. Second, complementary information is important for FGVC, but a standard ViT works by using the class token in the final layer for classification which is not enough to extract comprehensive fine-grained information at different levels. Third, the class token fuses the information of all patches in the same manner, in other words, the class token treats each patch equally. However, the discriminative parts should be more critical. To address these issues, we propose ACC-ViT including three novel components, i.e., Attention Patch Combination (APC), Critical Regions Filter (CRF), and Complementary Tokens Integration (CTI). Thereinto, APC pieces informative patches from two images to generate a new image to mitigate the noisy calculation and reinforce the differences between images. CRF emphasizes tokens corresponding to discriminative regions to generate a new class token for subtle feature learning. To extract comprehensive information, CTI integrates complementary information captured by class tokens in different ViT layers. We conduct comprehensive experiments on four widely used datasets and the results demonstrate that ACC-ViT can achieve competitive performance. The source code is available at https://github.com/Hector0426/fine-grained-image-classification-with-vit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sssssssoda完成签到,获得积分10
1秒前
wuzhizhongbin发布了新的文献求助10
3秒前
坦率的傲芙完成签到,获得积分10
3秒前
sssssssoda发布了新的文献求助10
3秒前
羊羊完成签到,获得积分10
7秒前
厉不厉害你坤哥完成签到,获得积分10
9秒前
w婷完成签到 ,获得积分10
9秒前
钢牙刷完成签到,获得积分10
10秒前
甜甜丑完成签到,获得积分10
12秒前
小二郎应助机灵雅寒采纳,获得10
13秒前
13秒前
苏小狸完成签到,获得积分10
14秒前
Summer发布了新的文献求助10
16秒前
钢牙刷发布了新的文献求助10
17秒前
17秒前
感动的仙人掌完成签到 ,获得积分10
17秒前
onward完成签到,获得积分10
19秒前
lzw123456发布了新的文献求助10
20秒前
21秒前
彩色草莓完成签到,获得积分10
21秒前
两天浇一次水完成签到,获得积分10
22秒前
lance应助a136采纳,获得10
24秒前
受伤问凝完成签到 ,获得积分10
24秒前
26秒前
万能图书馆应助Summer采纳,获得10
27秒前
是龙龙呀发布了新的文献求助10
27秒前
大头完成签到 ,获得积分10
27秒前
28秒前
852应助科研通管家采纳,获得10
28秒前
28秒前
研友_VZG7GZ应助科研通管家采纳,获得10
28秒前
大模型应助科研通管家采纳,获得10
28秒前
酷波er应助科研通管家采纳,获得10
28秒前
28秒前
所所应助科研通管家采纳,获得10
28秒前
顾矜应助科研通管家采纳,获得10
28秒前
28秒前
Leon应助科研通管家采纳,获得20
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
29秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825690
求助须知:如何正确求助?哪些是违规求助? 3367855
关于积分的说明 10448181
捐赠科研通 3087314
什么是DOI,文献DOI怎么找? 1698581
邀请新用户注册赠送积分活动 816841
科研通“疑难数据库(出版商)”最低求助积分说明 769973