GLSANet: Global-Local Self-Attention Network for Remote Sensing Image Semantic Segmentation

计算机科学 分割 背景(考古学) 人工智能 图像分割 桥(图论) 模式识别(心理学) 机制(生物学) 航程(航空) 图像(数学) 机器学习 地理 内科学 材料科学 考古 复合材料 哲学 认识论 医学
作者
Xudong Hu,Penglin Zhang,Qi Zhang,Feng Yuan
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:22
标识
DOI:10.1109/lgrs.2023.3235117
摘要

Learning long-range contextual dependence is important for remote sensing (RS) image segmentation in complex patterns. Meanwhile, exploring local context information is conducive to the discrimination of fine details. Only underlining either global semantic correlations or local context details is insufficient to achieve accurate segmentation. In this letter, we propose an architecture with the global-local self-attention (GLSA) mechanism, called GLSANet, which can simultaneously consider both global and local contexts for segmentations. Particularly, the GLSA mechanism consists of the global atrous self-attention (GASA) and local window self-attention (LWSA) mechanisms. GASA can learn long-range semantic relations in a gapped manner, while LWSA can locally capture contextual details. As a bridge between the two self-attention (SA) branches, a context fusion module (CFM) is further designed to adaptively integrate global and local contexts. The experiments with public datasets show that the proposed GLSANet significantly refines semantic segmentation and outperforms other competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AzA发布了新的文献求助10
1秒前
今后应助白日幻想家采纳,获得10
1秒前
打打应助铠甲勇士采纳,获得10
1秒前
wangying完成签到,获得积分10
4秒前
5秒前
6秒前
7秒前
7秒前
大个应助wangying采纳,获得30
7秒前
7秒前
刻苦的嫣发布了新的文献求助10
9秒前
9秒前
luoguixun发布了新的文献求助10
11秒前
微笑友容完成签到,获得积分10
12秒前
nihao发布了新的文献求助10
12秒前
铠甲勇士发布了新的文献求助10
13秒前
13秒前
卡卡西应助早川秋Akaiii采纳,获得10
14秒前
14秒前
虚拟的以南完成签到,获得积分10
15秒前
16秒前
luoguixun完成签到,获得积分10
16秒前
8R60d8应助小秋采纳,获得10
17秒前
科目三应助沙力VAN采纳,获得10
19秒前
19秒前
OnionJJ应助负责凝云采纳,获得10
19秒前
牧长一完成签到 ,获得积分0
20秒前
20秒前
静静完成签到,获得积分10
21秒前
22秒前
领导范儿应助科研通管家采纳,获得10
23秒前
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
23秒前
Li应助科研通管家采纳,获得20
23秒前
mao应助爱撒娇的映阳采纳,获得20
25秒前
26秒前
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810513
求助须知:如何正确求助?哪些是违规求助? 3354991
关于积分的说明 10373724
捐赠科研通 3071509
什么是DOI,文献DOI怎么找? 1686999
邀请新用户注册赠送积分活动 811345
科研通“疑难数据库(出版商)”最低求助积分说明 766619