已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Endometrial Cancer Individualized Scoring System (ECISS): A machine learning‐based prediction model of endometrial cancer prognosis

医学 子宫内膜癌 癌症 内科学 肿瘤科 围手术期 妇科 外科
作者
Sherif A. Shazly,Pluvio Coronado,Ercan Yılmaz,Rauf Melekoğlu,Hanifi Şahin,Luca Giannella,Andrea Ciavattini,Giovanni Delli Carpini,Jacopo Di Giuseppe,Angel Yordanov,Konstantina Karakadieva,Nevena Milenova Nedelcheva,Mariela Vasileva‐Slaveva,Juan Luis Alcázar,Enrique Chacón,Nabil Manzour,J. Vara,Erbil Karaman,Onur Karaaslan,Latif Hacıoğlu
出处
期刊:International journal of gynaecology and obstetrics [Wiley]
卷期号:161 (3): 760-768 被引量:8
标识
DOI:10.1002/ijgo.14639
摘要

Abstract Objective To establish a prognostic model for endometrial cancer (EC) that individualizes a risk and management plan per patient and disease characteristics. Methods A multicenter retrospective study conducted in nine European gynecologic cancer centers. Women with confirmed EC between January 2008 to December 2015 were included. Demographics, disease characteristics, management, and follow‐up information were collected. Cancer‐specific survival (CSS) and disease‐free survival (DFS) at 3 and 5 years comprise the primary outcomes of the study. Machine learning algorithms were applied to patient and disease characteristics. Model I: pretreatment model. Calculated probability was added to management variables (model II: treatment model), and the second calculated probability was added to perioperative and postoperative variables (model III). Results Of 1150 women, 1144 were eligible for 3‐year survival analysis and 860 for 5‐year survival analysis. Model I, II, and III accuracies of prediction of 5‐year CSS were 84.88%/85.47% (in train and test sets), 85.47%/84.88%, and 87.35%/86.05%, respectively. Model I predicted 3‐year CSS at an accuracy of 91.34%/87.02%. Accuracies of models I, II, and III in predicting 5‐year DFS were 74.63%/76.72%, 77.03%/76.72%, and 80.61%/77.78%, respectively. Conclusion The Endometrial Cancer Individualized Scoring System (ECISS) is a novel machine learning tool assessing patient‐specific survival probability with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木森完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
4秒前
5秒前
小迷糊发布了新的文献求助100
7秒前
ceeray23发布了新的文献求助20
8秒前
9秒前
9秒前
9秒前
艾斯发布了新的文献求助10
10秒前
打打应助yebk采纳,获得10
10秒前
开心小子发布了新的文献求助10
10秒前
搞怪的寄凡完成签到,获得积分20
14秒前
满意妙梦发布了新的文献求助10
14秒前
小马甲应助sheri1采纳,获得10
18秒前
大个应助Maizi采纳,获得10
18秒前
18秒前
19秒前
烤鸭卷饼发布了新的文献求助10
20秒前
蚊蚊爱读书应助冷珂采纳,获得30
21秒前
Aleioy完成签到,获得积分10
21秒前
Ava应助搞怪的寄凡采纳,获得10
22秒前
现实的面包完成签到,获得积分10
23秒前
wanci应助小邸采纳,获得10
23秒前
体贴冰之发布了新的文献求助10
23秒前
嗡嗡嗡完成签到 ,获得积分10
23秒前
华仔应助含晴天好摸鱼采纳,获得10
25秒前
执念完成签到 ,获得积分10
26秒前
26秒前
汉堡包应助yuanyuan采纳,获得10
28秒前
AX完成签到,获得积分10
30秒前
yebk发布了新的文献求助10
30秒前
英俊的铭应助体贴冰之采纳,获得10
30秒前
无机盐发布了新的文献求助10
30秒前
光亮的天川完成签到 ,获得积分10
31秒前
今后应助诸葛亮晶晶采纳,获得10
32秒前
123456发布了新的文献求助20
34秒前
小宝完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599516
求助须知:如何正确求助?哪些是违规求助? 4685187
关于积分的说明 14838060
捐赠科研通 4668727
什么是DOI,文献DOI怎么找? 2538015
邀请新用户注册赠送积分活动 1505447
关于科研通互助平台的介绍 1470804