GraSTI-ACL: Graph spatial–temporal infomax with adversarial contrastive learning for brain disorders diagnosis based on resting-state fMRI

作者
Biao He,Erni Ji,Xiaofen Zong,Zhen Liang,Gan Huang,Li Zhang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:107 (Pt A): 103815-103815
标识
DOI:10.1016/j.media.2025.103815
摘要

Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely used in research on brain disorders due to its informative spatial and temporal resolution, and it shows growing potential as a noninvasive tool for assisting clinical diagnosis. Among various methods based on rs-fMRI, graph neural networks have received significant attention because of their inherent structural similarity to functional connectivity networks (FCNs) of the brain. However, constructing FCNs that effectively capture both spatial and temporal information from rs-fMRI remains challenging, as traditional methods often rely on static, fully connected graphs that risk redundancy and neglect dynamic patterns. Based on the information bottleneck principle, this paper proposes a graph augmentation strategy named Graph Spatial-Temporal Infomax (GraSTI) to adaptively preserve both global spatial brain-wide FCNs and local temporal dynamics. We integrate GraSTI with theoretical explanations and design a practical implementation to adapt to our graph augmentation strategy and enhance feature capture capability. Furthermore, GraSTI is incorporated into an adversarial contrastive learning framework to achieve a mutual information equilibrium between graph representation effectiveness and robustness for downstream brain disorders diagnosis tasks. The proposed method is evaluated on datasets from three different brain disorders: Alzheimer's disease (AD), major depressive disorder (MDD), and bipolar disorder (BD). Extensive experiments demonstrate that the proposed GraSTI-ACL achieves diagnostic accuracy gains of 0.13% to 23.56% for AD, 1.23% to 13.81% for MDD, and 2.53% to 24.53% for BD diagnosis over existing methods. Meanwhile, our method demonstrates strong interpretability in identifying relevant brain regions and connectivities for different brain disorders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
ww发布了新的文献求助10
1秒前
abc完成签到 ,获得积分10
1秒前
1秒前
3秒前
4秒前
4秒前
Luna_aaa发布了新的文献求助10
6秒前
wzhang发布了新的文献求助10
6秒前
852应助合适妙海采纳,获得10
7秒前
Pattis完成签到 ,获得积分10
7秒前
田様应助文献狗采纳,获得10
7秒前
9秒前
3A87发布了新的文献求助30
11秒前
x1发布了新的文献求助10
11秒前
11秒前
11秒前
完美世界应助科研通管家采纳,获得10
12秒前
科目三应助真真采纳,获得10
12秒前
无极微光应助科研通管家采纳,获得20
12秒前
12秒前
田様应助科研通管家采纳,获得10
13秒前
13秒前
wanci应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
Akim应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得20
13秒前
在水一方应助nannan采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
阿布应助科研通管家采纳,获得10
13秒前
14秒前
15秒前
15秒前
潮汐发布了新的文献求助10
15秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626224
求助须知:如何正确求助?哪些是违规求助? 4712038
关于积分的说明 14957777
捐赠科研通 4781037
什么是DOI,文献DOI怎么找? 2554185
邀请新用户注册赠送积分活动 1515948
关于科研通互助平台的介绍 1476219