Iterative Polygon Deformation for Building Extraction

分割 多边形(计算机图形学) 计算机科学 多边形网格 顶点(图论) 图像分割 点在多边形内 集合(抽象数据类型) 计算机视觉 模式识别(心理学) 计算机图形学(图像) 人工智能 理论计算机科学 图形 电信 帧(网络) 程序设计语言
作者
Yunhui Zhu,Buliao Huang,Yizhan Fan,Muhammad Usman,Huanhuan Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3396813
摘要

Building extraction is a fundamental task in remote sensing image processing and plays a crucial role in modern engineering. A number of studies perform building extraction by pixel-wise segmentation and have achieved impressive performance in producing binary (building and non-building) segmentation masks. However, it is challenging to convert these segmentation masks into a set of vector polygons required for geographic and cartographic applications. To combat this issue, contour-based methods propose to directly predict a set of building polygons. However, the accuracy of their generated building polygons might be compromised as they overlook the geometric characteristics of buildings or situations where some building vertices are not predicted. To tackle these challenges, this paper proposes an Iterative Polygon Deformation Algorithm (IPDA), which includes two essential modules: initial polygon generation and missing vertex recovery. The former generates a building polygon for each instance based on the geometry of buildings, while the latter iteratively recovers building vertices that have not been predicted. Experiments conducted on five challenging datasets show that IPDA achieves significant improvements while maintaining less inference time. Furthermore, the proposed IPDA can also be extended to other contour-based methods, enhancing their performance. The code is available at https://github.com/zhuyh1223/IPDA/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
若雨凌风应助哈桑士采纳,获得20
2秒前
小玉应助ysw采纳,获得10
3秒前
田様应助Liangyu采纳,获得10
4秒前
英俊白莲发布了新的文献求助10
6秒前
6秒前
7秒前
LI发布了新的文献求助10
8秒前
彩色青亦发布了新的文献求助10
11秒前
赘婿应助LiP采纳,获得10
12秒前
Lesley完成签到 ,获得积分10
13秒前
14秒前
彩虹糖发布了新的文献求助10
14秒前
yudada给yudada的求助进行了留言
15秒前
17秒前
橙子发布了新的文献求助200
20秒前
木穹完成签到,获得积分0
21秒前
22秒前
xmz应助科研通管家采纳,获得10
23秒前
23秒前
xmz应助科研通管家采纳,获得10
23秒前
wangw061应助科研通管家采纳,获得20
23秒前
23秒前
24秒前
24秒前
酷波er应助狗蛋采纳,获得10
24秒前
24秒前
科研通AI5应助彩虹糖采纳,获得10
24秒前
chu发布了新的文献求助10
25秒前
26秒前
27秒前
NexusExplorer应助MeSs采纳,获得10
27秒前
清平道人完成签到,获得积分10
28秒前
29秒前
赵炎完成签到 ,获得积分10
29秒前
AlexLee发布了新的文献求助10
30秒前
30秒前
30秒前
瞌瞌发布了新的文献求助10
31秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829269
求助须知:如何正确求助?哪些是违规求助? 3371975
关于积分的说明 10470047
捐赠科研通 3091557
什么是DOI,文献DOI怎么找? 1701181
邀请新用户注册赠送积分活动 818284
科研通“疑难数据库(出版商)”最低求助积分说明 770765