Comparative evaluation of long non-coding RNA-based biomarkers in the urinary sediment and urinary exosomes for non-invasive diagnosis of bladder cancer

马拉特1 泌尿系统 接收机工作特性 尿 医学 尿沉渣 膀胱癌 长非编码RNA 生物标志物 微泡 肿瘤科 癌症 内科学 小RNA 核糖核酸 生物 基因 遗传学
作者
Tongtong Qiu,Mei Xue,Xu Li,Fangyuan Li,Shanshan Liu,Chenyu Yao,Wei Chen
出处
期刊:Molecular omics [Royal Society of Chemistry]
卷期号:18 (10): 938-947 被引量:1
标识
DOI:10.1039/d2mo00107a
摘要

Bladder cancer (BC) frequently causes a heavy disease burden for patients because of its easy recurrence. There is still a lack of convenient and effective methods to diagnose or monitor BC in the clinic. Emerging evidence suggests that long non-coding RNAs (lncRNAs) in urine are promising biomarkers for BC diagnosis. This study aimed to evaluate the performance of lncRNAs in urine for BC diagnosis. Seven lncRNAs (UCA1, H19, MALAT1, TUG1, GAS5, RMRP, and LINC01517) were selected as candidates by analyzing The Cancer Genome Atlas database or the literature. Expression of the candidate lncRNAs in the urinary sediment and exosomes was determined in a training cohort (n = 42) and an independent validation cohort (n = 56). Compared with normal controls, the patients with BC had a higher expression of RMRP, UCA1 and MALAT1 in the urinary exosomes and a higher expression of MALAT1 in the urinary sediment. Compared with MALAT1 in the urinary sediment, RMRP, UCA1, and MALAT1 in urinary exosomes exhibited higher combined diagnostic performance for BC diagnosis. Furthermore, higher RMRP expression in urinary exosomes was correlated with advanced tumor stages. A lncRNA panel consisting of urinary exosomal RMRP, UCA1 and MALAT1 was used to establish the support vector machine (SVM) model. An area under receiver operating characteristic (ROC) curve of the lncRNA panel predicted by the SVM model was 0.875 (sensitivity = 80.0% and specificity = 81.4%). Therefore, the lncRNA panel consisting of three urinary exosomal RMRP, UCA1 and MALAT1 has the potential to be biomarkers for BC diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LHJZS发布了新的文献求助10
刚刚
1秒前
BK发布了新的文献求助10
1秒前
小郭发布了新的文献求助10
1秒前
情怀应助Asuka采纳,获得10
3秒前
在水一方应助咚巴拉采纳,获得10
4秒前
4秒前
林间发布了新的文献求助10
4秒前
阿宝完成签到,获得积分10
4秒前
快乐小熊发布了新的文献求助10
5秒前
ding应助sensen采纳,获得10
5秒前
LHJZS完成签到,获得积分20
5秒前
安详晓亦完成签到,获得积分10
6秒前
汉堡包应助小路采纳,获得10
6秒前
6秒前
6秒前
搜集达人应助马前人采纳,获得10
6秒前
深情安青应助LANER采纳,获得10
6秒前
dwfwq完成签到,获得积分10
7秒前
英俊的铭应助祎薇采纳,获得10
8秒前
9秒前
9秒前
xsc发布了新的文献求助10
9秒前
夏荧荧发布了新的文献求助10
10秒前
Yilee大壮发布了新的文献求助10
10秒前
打打应助林间采纳,获得10
11秒前
三叔发布了新的文献求助10
12秒前
李健的粉丝团团长应助BK采纳,获得10
13秒前
14秒前
上官老黑发布了新的文献求助10
15秒前
16秒前
大雪完成签到,获得积分10
16秒前
sensen发布了新的文献求助10
18秒前
Chency完成签到,获得积分10
19秒前
20秒前
xxc发布了新的文献求助10
20秒前
稳稳稳发布了新的文献求助10
20秒前
916举报哆啦A梦求助涉嫌违规
20秒前
薄桉应助亲爱的冯老师采纳,获得10
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811156
求助须知:如何正确求助?哪些是违规求助? 3355532
关于积分的说明 10376459
捐赠科研通 3072336
什么是DOI,文献DOI怎么找? 1687391
邀请新用户注册赠送积分活动 811622
科研通“疑难数据库(出版商)”最低求助积分说明 766715