Automated Whole-Brain Focal Cortical Dysplasia Detection Using MR Fingerprinting With Deep Learning

皮质发育不良 医学 神经科学 人工智能 磁共振成像 心理学 计算机科学 放射科
作者
Zheng Ding,Spencer Morris,Siyuan Hu,Ting‐Yu Su,Joon Yul Choi,Ingmar Blümcke,Xiao Feng Wang,Ken Sakaie,Hiroatsu Murakami,Andreas V. Alexopoulos,Stephen E. Jones,Imad Najm,Dan Ma,Irène Wang
出处
期刊:Neurology [Lippincott Williams & Wilkins]
卷期号:104 (11)
标识
DOI:10.1212/wnl.0000000000213691
摘要

Focal cortical dysplasia (FCD) is a common pathology for pharmacoresistant focal epilepsy, yet detection of FCD on clinical MRI is challenging. Magnetic resonance fingerprinting (MRF) is a novel quantitative imaging technique providing fast and reliable tissue property measurements. The aim of this study was to develop an MRF-based deep-learning (DL) framework for whole-brain FCD detection. We included patients with pharmacoresistant focal epilepsy and pathologically/radiologically diagnosed FCD, as well as age-matched and sex-matched healthy controls (HCs). All participants underwent 3D whole-brain MRF and clinical MRI scans. T1, T2, gray matter (GM), and white matter (WM) tissue fraction maps were reconstructed from a dictionary-matching algorithm based on the MRF acquisition. A 3D ROI was manually created for each lesion. All MRF maps and lesion labels were registered to the Montreal Neurological Institute space. Mean and SD T1 and T2 maps were calculated voxel-wise across using HC data. T1 and T2 z-score maps for each patient were generated by subtracting the mean HC map and dividing by the SD HC map. MRF-based morphometric maps were produced in the same manner as in the morphometric analysis program (MAP), based on MRF GM and WM maps. A no-new U-Net model was trained using various input combinations, with performance evaluated through leave-one-patient-out cross-validation. We compared model performance using various input combinations from clinical MRI and MRF to assess the impact of different input types on model effectiveness. We included 40 patients with FCD (mean age 28.1 years, 47.5% female; 11 with FCD IIa, 14 with IIb, 12 with mMCD, 3 with MOGHE) and 67 HCs. The DL model with optimal performance used all MRF-based inputs, including MRF-synthesized T1w, T1z, and T2z maps; tissue fraction maps; and morphometric maps. The patient-level sensitivity was 80% with an average of 1.7 false positives (FPs) per patient. Sensitivity was consistent across subtypes, lobar locations, and lesional/nonlesional clinical MRI. Models using clinical images showed lower sensitivity and higher FPs. The MRF-DL model also outperformed the established MAP18 pipeline in sensitivity, FPs, and lesion label overlap. The MRF-DL framework demonstrated efficacy for whole-brain FCD detection. Multiparametric MRF features from a single scan offer promising inputs for developing a deep-learning tool capable of detecting subtle epileptic lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJL发布了新的文献求助30
刚刚
刚刚
刚刚
ydh完成签到,获得积分10
1秒前
星辰大海应助HAOS采纳,获得30
1秒前
梦比优斯完成签到,获得积分20
2秒前
2秒前
李鹏完成签到 ,获得积分10
2秒前
2秒前
2秒前
辛勤月饼发布了新的文献求助20
3秒前
在水一方应助linda采纳,获得10
3秒前
阿中发布了新的文献求助10
3秒前
4秒前
5秒前
别摆烂了发布了新的文献求助10
6秒前
梦比优斯发布了新的文献求助10
6秒前
刘小博发布了新的文献求助10
7秒前
8秒前
小胖子发布了新的文献求助30
8秒前
8秒前
8秒前
Dragonfln发布了新的文献求助10
8秒前
8秒前
雾昂发布了新的文献求助30
10秒前
COSMAO应助jiang采纳,获得10
11秒前
ya完成签到 ,获得积分20
12秒前
科研通AI2S应助一一得一采纳,获得10
12秒前
12秒前
Lisa完成签到,获得积分10
14秒前
个性的紫菜应助pyb0919采纳,获得20
14秒前
小祖宗发布了新的文献求助10
15秒前
ricardo完成签到,获得积分10
15秒前
酷波er应助刘小博采纳,获得10
16秒前
星辰大海应助尊敬的丹烟采纳,获得10
17秒前
17秒前
桐桐应助Dragonfln采纳,获得10
17秒前
18秒前
李鹏关注了科研通微信公众号
18秒前
搜集达人应助wujun采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4970438
求助须知:如何正确求助?哪些是违规求助? 4227024
关于积分的说明 13165486
捐赠科研通 4014920
什么是DOI,文献DOI怎么找? 2196971
邀请新用户注册赠送积分活动 1209923
关于科研通互助平台的介绍 1124244