Automated Whole-Brain Focal Cortical Dysplasia Detection Using MR Fingerprinting With Deep Learning

皮质发育不良 医学 神经科学 人工智能 磁共振成像 心理学 计算机科学 放射科
作者
Zheng Ding,Spencer Morris,Siyuan Hu,Ting‐Yu Su,Joon Yul Choi,Ingmar Blümcke,Xiao Feng Wang,Ken Sakaie,Hiroatsu Murakami,Andreas V. Alexopoulos,Stephen E. Jones,Imad Najm,Dan Ma,Irène Wang
出处
期刊:Neurology [Lippincott Williams & Wilkins]
卷期号:104 (11)
标识
DOI:10.1212/wnl.0000000000213691
摘要

Focal cortical dysplasia (FCD) is a common pathology for pharmacoresistant focal epilepsy, yet detection of FCD on clinical MRI is challenging. Magnetic resonance fingerprinting (MRF) is a novel quantitative imaging technique providing fast and reliable tissue property measurements. The aim of this study was to develop an MRF-based deep-learning (DL) framework for whole-brain FCD detection. We included patients with pharmacoresistant focal epilepsy and pathologically/radiologically diagnosed FCD, as well as age-matched and sex-matched healthy controls (HCs). All participants underwent 3D whole-brain MRF and clinical MRI scans. T1, T2, gray matter (GM), and white matter (WM) tissue fraction maps were reconstructed from a dictionary-matching algorithm based on the MRF acquisition. A 3D ROI was manually created for each lesion. All MRF maps and lesion labels were registered to the Montreal Neurological Institute space. Mean and SD T1 and T2 maps were calculated voxel-wise across using HC data. T1 and T2 z-score maps for each patient were generated by subtracting the mean HC map and dividing by the SD HC map. MRF-based morphometric maps were produced in the same manner as in the morphometric analysis program (MAP), based on MRF GM and WM maps. A no-new U-Net model was trained using various input combinations, with performance evaluated through leave-one-patient-out cross-validation. We compared model performance using various input combinations from clinical MRI and MRF to assess the impact of different input types on model effectiveness. We included 40 patients with FCD (mean age 28.1 years, 47.5% female; 11 with FCD IIa, 14 with IIb, 12 with mMCD, 3 with MOGHE) and 67 HCs. The DL model with optimal performance used all MRF-based inputs, including MRF-synthesized T1w, T1z, and T2z maps; tissue fraction maps; and morphometric maps. The patient-level sensitivity was 80% with an average of 1.7 false positives (FPs) per patient. Sensitivity was consistent across subtypes, lobar locations, and lesional/nonlesional clinical MRI. Models using clinical images showed lower sensitivity and higher FPs. The MRF-DL model also outperformed the established MAP18 pipeline in sensitivity, FPs, and lesion label overlap. The MRF-DL framework demonstrated efficacy for whole-brain FCD detection. Multiparametric MRF features from a single scan offer promising inputs for developing a deep-learning tool capable of detecting subtle epileptic lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助liang采纳,获得10
刚刚
11发布了新的文献求助10
刚刚
KD发布了新的文献求助10
1秒前
5秒前
8秒前
洪山老狗发布了新的文献求助10
9秒前
小李在哪儿完成签到 ,获得积分10
10秒前
科研通AI5应助亿眼万年采纳,获得10
12秒前
12秒前
Jam完成签到,获得积分10
12秒前
12秒前
妮妮发布了新的文献求助10
12秒前
鱼跃完成签到,获得积分10
17秒前
17秒前
梨涡远点发布了新的文献求助10
17秒前
Zel博博完成签到,获得积分10
18秒前
cy完成签到,获得积分10
18秒前
Mansis发布了新的文献求助10
18秒前
11完成签到,获得积分10
19秒前
生动谷蓝完成签到,获得积分10
20秒前
21秒前
23秒前
王彭源发布了新的文献求助10
24秒前
0109完成签到,获得积分10
24秒前
胡新语发布了新的文献求助10
30秒前
清新的苑博完成签到,获得积分10
32秒前
33秒前
NexusExplorer应助zzz采纳,获得50
35秒前
wls完成签到 ,获得积分10
37秒前
汤圆本圆完成签到,获得积分20
37秒前
37秒前
田様应助感性的寄真采纳,获得30
38秒前
汤圆本圆发布了新的文献求助10
39秒前
醋溜爆肚儿完成签到,获得积分10
41秒前
coffe逗发布了新的文献求助30
42秒前
ght完成签到 ,获得积分10
44秒前
44秒前
清新完成签到,获得积分10
44秒前
沉默的香氛完成签到 ,获得积分10
45秒前
45秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828040
求助须知:如何正确求助?哪些是违规求助? 3370323
关于积分的说明 10462906
捐赠科研通 3090294
什么是DOI,文献DOI怎么找? 1700312
邀请新用户注册赠送积分活动 817813
科研通“疑难数据库(出版商)”最低求助积分说明 770458