YOLO-MECD: Citrus Detection Algorithm Based on YOLOv11

计算机科学 算法 人工智能
作者
Yue Liao,Lerong Li,Han Xiao,Fangzhou Xu,Bochen Shan,Hua Yin
出处
期刊:Agronomy [Multidisciplinary Digital Publishing Institute]
卷期号:15 (3): 687-687 被引量:2
标识
DOI:10.3390/agronomy15030687
摘要

Accurate quantification of the citrus dropped number plays a vital role in evaluating the disaster resistance capabilities of citrus varieties and selecting superior cultivars. However, research in this critical area remains notably insufficient. To bridge this gap, we conducted in-depth experiments using a custom dataset of 1200 citrus images and proposed a lightweight YOLO-MECD model that is built upon the YOLOv11s architecture. Firstly, the EMA attention mechanism was introduced as a replacement for the traditional C2PSA attention mechanism. This modification not only enhances feature extraction capabilities and detection accuracy for citrus fruits but also achieves a significant reduction in model parameters. Secondly, we implemented a CSPPC module based on partial convolution to replace the original C3K2 module, effectively reducing both parameter count and computational complexity while maintaining mAP values. At last, the MPDIoU loss function was employed, resulting in improved bounding box detection accuracy and accelerated model convergence. Notably, our research reveals that reducing convolution operations in the backbone architecture substantially enhances small object detection capabilities and significantly decreases model parameters, proving more effective than the addition of small object detection heads. The experimental results and comparative analysis with similar network models indicate that the YOLO-MECD model has achieved significant improvements in both detection performance and computational efficiency. This model demonstrates excellent comprehensive performance in citrus object detection tasks, with a precision (P) of 84.4%, a recall rate (R) of 73.3%, and an elevated mean average precision (mAP) of 81.6%. Compared to the baseline, YOLO-MECD has improved by 0.2, 4.1, and 3.9 percentage points in detection precision, recall rate, and mAP value, respectively. Furthermore, the number of model parameters has been substantially reduced from 9,413,574 in YOLOv11s to 2,297,334 (a decrease of 75.6%), and the model size has been compressed from 18.2 MB to 4.66 MB (a reduction of 74.4%). Moreover, YOLO-MECD also demonstrates superior performance against contemporary models, with mAP improvements of 3.8%, 3.2%, and 5.5% compared to YOLOv8s, YOLOv9s, and YOLOv10s, respectively. The model’s versatility is evidenced by its excellent detection performance across various citrus fruits, including pomelos and kumquats. These achievements establish YOLO-MECD as a robust technical foundation for advancing citrus fruit detection systems and the development of smart orchards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luchong发布了新的文献求助10
刚刚
XL完成签到,获得积分10
刚刚
刚刚
李健的小迷弟应助橘子采纳,获得10
1秒前
1秒前
王三发布了新的文献求助10
2秒前
哎呀妈呀完成签到,获得积分10
2秒前
3秒前
saberLee完成签到,获得积分10
3秒前
顺利采枫发布了新的文献求助10
4秒前
深情安青应助山橘月采纳,获得10
4秒前
ttfakira完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
科研通AI5应助自然的砖头采纳,获得10
5秒前
Joshua发布了新的文献求助10
6秒前
曾淋发布了新的文献求助30
6秒前
万能图书馆应助包容妙竹采纳,获得10
6秒前
hjg完成签到,获得积分10
7秒前
carl发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
明亮幻枫应助crazy采纳,获得10
10秒前
M1有光发布了新的文献求助10
12秒前
Vyasa发布了新的文献求助10
12秒前
cici发布了新的文献求助10
13秒前
诺笙发布了新的文献求助10
15秒前
顺利采枫完成签到,获得积分10
16秒前
写歌养猫盖城堡完成签到,获得积分20
18秒前
20秒前
希望天下0贩的0应助丹菲采纳,获得30
21秒前
万能图书馆应助优雅柏柳采纳,获得10
23秒前
Akim应助cici采纳,获得10
23秒前
666完成签到,获得积分10
23秒前
科研通AI5应助Vyasa采纳,获得10
24秒前
妩媚的强炫完成签到,获得积分10
24秒前
carl完成签到,获得积分10
27秒前
Akim应助玻丽露露采纳,获得10
30秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820938
求助须知:如何正确求助?哪些是违规求助? 3363863
关于积分的说明 10425692
捐赠科研通 3082312
什么是DOI,文献DOI怎么找? 1695498
邀请新用户注册赠送积分活动 815147
科研通“疑难数据库(出版商)”最低求助积分说明 768982