Prediction models for liver decompensation in compensated advanced chronic liver disease: a systematic review

失代偿 医学 肝硬化 肝病 慢性肝病 内科学 梅德林 肝细胞癌 重症监护医学 政治学 法学
作者
Vincent Haghnejad,Laura G. Burke,Siham El Ouahabi,Richard Parker,Ian Rowe
出处
期刊:Hepatology [Wiley]
标识
DOI:10.1097/hep.0000000000001359
摘要

Background and Aims: Identifying individuals with compensated advanced chronic liver disease (cACLD) at risk of decompensation allows for personalized therapy. However, predicting decompensation is challenging, and multiple models have been developed. This study systematically appraises the performance and clinical applications of published multivariable models predicting first decompensation in patients with cACLD or compensated cirrhosis. Approach and Results: We searched MEDLINE for liver decompensation prediction models from inception to December 2023. The research was registered with PROSPERO (CRD42023488395). Model risk of bias and applicability were assessed using the PROBAST tool, with results summarized via narrative synthesis. Reporting followed PRISMA and CHARMS guidelines. Sixteen studies (retrospective and prospective) were included. Seven focused on a single aetiology. No study specifically predicted outcomes in persons with alcohol-related liver disease. Outcome definitions varied, with some models predicting hepatocellular carcinoma together with decompensation. In total, 27 predictors were included in the models. The most frequent predictors were albumin, platelets, age, liver stiffness, bilirubin, international normalized ratio, and the presence of portal-hypertension-related findings during upper gastrointestinal endoscopy. All studies reported discrimination measures but only 10/16 evaluated calibration. External validation was conducted in 9/16 studies. Thirteen studies were rated as having a high overall risk of bias. Conclusions: For clinical utility, a predictive model must accurately describe future risks. Models for predicting decompensation in cACLD are often poorly described, infrequently include patients with ArLD, and lack external validation. These factors are barriers to the clinical utility and uptake of predictive models for first decompensation in patients with cACLD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
jie酱拌面发布了新的文献求助10
刚刚
今后应助王海洋采纳,获得10
刚刚
姚昂发布了新的文献求助10
刚刚
烟花应助十个勤天采纳,获得10
1秒前
王哪跑发布了新的文献求助80
1秒前
1秒前
1秒前
2秒前
想见完成签到,获得积分10
2秒前
2秒前
bow完成签到 ,获得积分10
2秒前
2秒前
2秒前
机灵听枫发布了新的文献求助10
2秒前
鳗鱼鞋垫发布了新的文献求助10
2秒前
3秒前
汉堡包应助Georges-09采纳,获得10
3秒前
童幻香发布了新的文献求助10
3秒前
戒骄戒躁发布了新的文献求助10
4秒前
wang完成签到,获得积分10
4秒前
D-D发布了新的文献求助10
4秒前
ding应助Bluestar采纳,获得10
5秒前
5秒前
宴之敖者完成签到,获得积分10
5秒前
5秒前
6秒前
eagle14835完成签到,获得积分10
6秒前
樊樊发布了新的文献求助10
6秒前
7秒前
Orange应助111采纳,获得10
7秒前
虞丹萱完成签到,获得积分10
7秒前
在水一方应助honger采纳,获得10
7秒前
X_X关注了科研通微信公众号
8秒前
8秒前
qiao完成签到 ,获得积分10
8秒前
8秒前
欣慰妙芹完成签到,获得积分10
8秒前
9秒前
李健的小迷弟应助李李李采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653486
求助须知:如何正确求助?哪些是违规求助? 4790016
关于积分的说明 15064423
捐赠科研通 4812137
什么是DOI,文献DOI怎么找? 2574306
邀请新用户注册赠送积分活动 1529926
关于科研通互助平台的介绍 1488661