Combating the Small Sample Class Imbalance Problem Using Feature Selection

特征选择 计算机科学 人工智能 性能指标 机器学习 特征(语言学) 分类器(UML) 模式识别(心理学) 数据挖掘 公制(单位) 重采样 样本量测定 数学 统计 哲学 经济 管理 语言学 运营管理
作者
Mike Wasikowski,Xuewen Chen
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:22 (10): 1388-1400 被引量:376
标识
DOI:10.1109/tkde.2009.187
摘要

The class imbalance problem is encountered in real-world applications of machine learning and results in a classifier's suboptimal performance. Researchers have rigorously studied the resampling, algorithms, and feature selection approaches to this problem. No systematic studies have been conducted to understand how well these methods combat the class imbalance problem and which of these methods best manage the different challenges posed by imbalanced data sets. In particular, feature selection has rarely been studied outside of text classification problems. Additionally, no studies have looked at the additional problem of learning from small samples. This paper presents a first systematic comparison of the three types of methods developed for imbalanced data classification problems and of seven feature selection metrics evaluated on small sample data sets from different applications. We evaluated the performance of these metrics using area under the receiver operating characteristic (AUC) and area under the precision-recall curve (PRC). We compared each metric on the average performance across all problems and on the likelihood of a metric yielding the best performance on a specific problem. We examined the performance of these metrics inside each problem domain. Finally, we evaluated the efficacy of these metrics to see which perform best across algorithms. Our results showed that signal-to-noise correlation coefficient (S2N) and Feature Assessment by Sliding Thresholds (FAST) are great candidates for feature selection in most applications, especially when selecting very small numbers of features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘涂完成签到 ,获得积分10
1秒前
大个应助ordin采纳,获得10
1秒前
897Kk6发布了新的文献求助80
2秒前
Orange应助平常的傲白采纳,获得10
2秒前
xiancdc完成签到,获得积分10
3秒前
3秒前
ZS应助拉登是我干掉的采纳,获得10
3秒前
友好的向日葵完成签到,获得积分10
4秒前
4秒前
5秒前
科目三应助是小程啊采纳,获得10
5秒前
SciGPT应助Tinadai123456采纳,获得10
7秒前
SSSSCCCCIIII完成签到,获得积分10
7秒前
7秒前
烟花应助可以采纳,获得10
9秒前
CAE上路到上吊完成签到,获得积分10
9秒前
hyhyhyhy发布了新的文献求助10
10秒前
何1发布了新的文献求助10
10秒前
刘家骏发布了新的文献求助10
10秒前
吉祥高趙发布了新的文献求助20
11秒前
11秒前
12秒前
12秒前
13秒前
ggcfg完成签到,获得积分10
13秒前
13秒前
13秒前
ljy关注了科研通微信公众号
13秒前
大个应助自然卷卷卷采纳,获得10
14秒前
好数据完成签到 ,获得积分10
14秒前
14秒前
14秒前
整点薯条发布了新的文献求助10
14秒前
如意的尔竹完成签到,获得积分10
15秒前
15秒前
若男发布了新的文献求助10
15秒前
Yoopakho发布了新的文献求助10
16秒前
科研通AI6应助wd采纳,获得10
16秒前
ggcfg发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4565745
求助须知:如何正确求助?哪些是违规求助? 3989282
关于积分的说明 12352360
捐赠科研通 3660690
什么是DOI,文献DOI怎么找? 2017320
邀请新用户注册赠送积分活动 1051693
科研通“疑难数据库(出版商)”最低求助积分说明 939350