模型预测控制
控制理论(社会学)
避障
弹道
控制器(灌溉)
车辆动力学
线性二次调节器
计算机科学
避碰
线性模型
控制工程
工程类
控制(管理)
人工智能
移动机器人
汽车工程
机器学习
碰撞
物理
天文
机器人
生物
计算机安全
农学
作者
J-M Park,D-W Kim,Y-S Yoon,H J Kim,K-S Yi
标识
DOI:10.1243/09544070jauto1149
摘要
This paper presents an obstacle avoidance scheme for autonomous vehicles as an active safety procedure in unknown environments. Safe trajectories are generated using the non-linear model predictive framework, in which the simplified dynamics of the vehicle are used to predict the state of the vehicle over the look-ahead horizon. To compensate for the slight dissimilarity between the simplified model and the actual vehicle, a separate controller is designed to track the generated trajectory. The longitudinal dynamics of the vehicle are controlled using the inverse dynamics of the vehicle powertrain model, and the lateral dynamics are controlled using a linear quadratic regulator. In the non-linear model predictive framework, to obtain safe trajectories, local obstacle information is incorporated into the performance index using a parallax-based method. Simulation results on a full non-linear vehicle model show that the proposed combination of model-predictive-control-based trajectory generation and tracking controller gives satisfactory online obstacle avoidance performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI