Synthesis of self-modified black BaTiO3−x nanoparticles and effect of oxygen vacancy for the expansion of piezocatalytic application

材料科学 钛酸钡 纳米颗粒 压电 化学工程 超声波传感器 纳米技术 原材料 炭黑 氧气 复合材料 陶瓷 有机化学 物理 工程类 天然橡胶 化学 声学
作者
Myeongjun Ji,J.H. Kim,Cheol‐Hui Ryu,Young‐In Lee
出处
期刊:Nano Energy [Elsevier]
卷期号:95: 106993-106993 被引量:83
标识
DOI:10.1016/j.nanoen.2022.106993
摘要

Piezocatalysis is considered as a promising green and sustainable technology because of its ability to promote passive conversion of natural mechanical energy into electrochemical energy. Barium titanate (BaTiO3) nanoparticles have been actively studied as a piezocatalyst because of their non-toxicity, physicochemical stability, and high piezoelectric potential. However, their low carrier concentration is a significant drawback that limits their applicability as piezocatalysts only in ultrasonic systems, which can thermally excite BaTiO3 via cavitation. The defect engineering is a useful technique to modulate the electrical property of materials via a simple process involving the introduction of atomic defects. However, only a few reports on the synthesis of black BaTiO3−x are available, and investigations on the piezocatalytic performance of black BaTiO3−x nanoparticles have not yet been reported. In this study, the self-modified black BaTiO3−x nanoparticles were successfully synthesized through a simple solid-state reaction using defective raw materials in the reducing atmosphere. The effect of oxygen vacancies in the raw materials on the synthesis mechanism, size, and defect concentration of the final products was effectively demonstrated. Furthermore, the efficiency of defect engineering in improving the piezocatalytic performance in terms of free carrier concentration was systematically studied and subsequently proved. This paper reports a pioneering strategy that can promote the widespread practical applications of black BaTiO3−x as a piezocatalyst.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sylvia完成签到,获得积分10
1秒前
所所应助Kaka采纳,获得10
1秒前
bkagyin应助刚子采纳,获得10
1秒前
2秒前
2秒前
梁宁发布了新的文献求助10
2秒前
3秒前
小董完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
小黄还你好完成签到 ,获得积分10
3秒前
ruochenzu完成签到,获得积分10
4秒前
4秒前
页一成完成签到,获得积分10
5秒前
5秒前
爆米花应助追寻的碧空采纳,获得10
5秒前
5秒前
5秒前
crane完成签到,获得积分10
5秒前
6秒前
6秒前
siina发布了新的文献求助10
6秒前
火星上的初蝶关注了科研通微信公众号
6秒前
苏牧完成签到 ,获得积分10
7秒前
机智的曼易完成签到,获得积分10
7秒前
一只小羊完成签到,获得积分10
7秒前
7秒前
酷波er应助尧尧采纳,获得10
8秒前
饱满的琦发布了新的文献求助10
8秒前
mookie发布了新的文献求助10
8秒前
root完成签到,获得积分10
9秒前
9秒前
JamesPei应助ww采纳,获得30
9秒前
9秒前
10秒前
干红发布了新的文献求助10
10秒前
漂亮藏鸟发布了新的文献求助10
10秒前
10秒前
baimiaomuzi完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720067
求助须知:如何正确求助?哪些是违规求助? 5258729
关于积分的说明 15290203
捐赠科研通 4869657
什么是DOI,文献DOI怎么找? 2614906
邀请新用户注册赠送积分活动 1564885
关于科研通互助平台的介绍 1522079