亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Weakly supervised deep learning for prediction of treatment effectiveness on ovarian cancer from histopathology images

贝伐单抗 医学 卵巢癌 揭穿 卵巢癌 化疗 癌症 肿瘤科 组织病理学 内科学 H&E染色 病理 免疫组织化学
作者
Ching‐Wei Wang,Cheng‐Chang Chang,Yu‐Ching Lee,Yi‐Jia Lin,Shih-Chang Lo,Po-Chao Hsu,Yi-An Liou,Chih‐Hung Wang,Tai‐Kuang Chao
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:99: 102093-102093 被引量:44
标识
DOI:10.1016/j.compmedimag.2022.102093
摘要

Despite the progress made during the last two decades in the surgery and chemotherapy of ovarian cancer, more than 70 % of advanced patients are with recurrent cancer and decease. Surgical debulking of tumors following chemotherapy is the conventional treatment for advanced carcinoma, but patients with such treatment remain at great risk for recurrence and developing drug resistance, and only about 30 % of the women affected will be cured. Bevacizumab is a humanized monoclonal antibody, which blocks VEGF signaling in cancer, inhibits angiogenesis and causes tumor shrinkage, and has been recently approved by FDA as a monotherapy for advanced ovarian cancer in combination with chemotherapy. Considering the cost, potential toxicity, and finding that only a portion of patients will benefit from these drugs, the identification of new predictive method for the treatment of ovarian cancer remains an urgent unmet medical need. In this study, we develop weakly supervised deep learning approaches to accurately predict therapeutic effect for bevacizumab of ovarian cancer patients from histopathological hematoxylin and eosin stained whole slide images, without any pathologist-provided locally annotated regions. To the authors’ best knowledge, this is the first model demonstrated to be effective for prediction of the therapeutic effect of patients with epithelial ovarian cancer to bevacizumab. Quantitative evaluation of a whole section dataset shows that the proposed method achieves high accuracy, 0.882 ± 0.06; precision, 0.921 ± 0.04, recall, 0.912 ± 0.03; F-measure, 0.917 ± 0.07 using 5-fold cross validation and outperforms two state-of-the art deep learning approaches Coudray et al. (2018), Campanella et al. (2019). For an independent TMA testing set, the three proposed methods obtain promising results with high recall (sensitivity) 0.946, 0.893 and 0.964, respectively. The results suggest that the proposed method could be useful for guiding treatment by assisting in filtering out patients without positive therapeutic response to suffer from further treatments while keeping patients with positive response in the treatment process. Furthermore, according to the statistical analysis of the Cox Proportional Hazards Model, patients who were predicted to be invalid by the proposed model had a very high risk of cancer recurrence (hazard ratio = 13.727) than patients predicted to be effective with statistical signifcance (p < 0.05).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小周周发布了新的文献求助10
刚刚
sudor123456完成签到,获得积分10
刚刚
科研狗完成签到 ,获得积分10
2秒前
suxili完成签到 ,获得积分10
4秒前
xuzj完成签到,获得积分10
8秒前
浮浮世世完成签到,获得积分10
11秒前
白鸽鸽完成签到,获得积分10
12秒前
12秒前
ppg123应助科研通管家采纳,获得10
14秒前
Jasper应助超级月饼采纳,获得10
14秒前
ppg123应助科研通管家采纳,获得10
14秒前
14秒前
ppg123应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
14秒前
MOJIN发布了新的文献求助10
15秒前
阿司匹林完成签到 ,获得积分10
19秒前
sunnn完成签到 ,获得积分10
20秒前
卡卡东完成签到 ,获得积分10
20秒前
QCB完成签到 ,获得积分10
22秒前
30秒前
LAN完成签到,获得积分10
31秒前
子苇发布了新的文献求助10
31秒前
衣裳薄完成签到,获得积分10
33秒前
欣喜的人龙完成签到 ,获得积分10
33秒前
33秒前
超级月饼发布了新的文献求助10
36秒前
小周周完成签到,获得积分10
37秒前
魁梧的衫完成签到 ,获得积分10
38秒前
Zero完成签到,获得积分10
39秒前
子苇完成签到,获得积分10
39秒前
Mei完成签到,获得积分10
45秒前
46秒前
宝宝熊的熊宝宝完成签到,获得积分10
56秒前
OeO完成签到 ,获得积分10
56秒前
meow完成签到 ,获得积分10
56秒前
小二郎应助超级月饼采纳,获得10
1分钟前
赛猪完成签到,获得积分10
1分钟前
Lily完成签到 ,获得积分10
1分钟前
scc完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994889
求助须知:如何正确求助?哪些是违规求助? 3535040
关于积分的说明 11267040
捐赠科研通 3274842
什么是DOI,文献DOI怎么找? 1806478
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809762