Identification of Fungicide Combinations Targeting Plasmopara viticola and Botrytis cinerea Fungicide Resistance Using Machine Learning

葡萄疟原虫 杀菌剂 灰葡萄孢菌 霜霉病 生物 葡萄球菌炎 斯特罗比林 阿米西达 植物
作者
Junrui Zhang,Sandun Fernando
出处
期刊:Microorganisms [MDPI AG]
卷期号:11 (5): 1341-1341 被引量:11
标识
DOI:10.3390/microorganisms11051341
摘要

Downy mildew (caused by Plasmopara viticola) and gray mold (caused by Botrytis cinerea) are fungal diseases that significantly impact grape production globally. Cytochrome b plays a significant role in the mitochondrial respiratory chain of the two fungi that cause these diseases and is a key target for quinone outside inhibitor (QoI)-based fungicide development. Since the mode of action (MOA) of QoI fungicides is restricted to a single active site, the risk of developing resistance to these fungicides is deemed high. Consequently, using a combination of fungicides is considered an effective way to reduce the development of QoI resistance. Currently, there is little information available to help in the selection of appropriate fungicides. This study used a combination of in silico simulations and quantitative structure–activity relationship (QSAR) machine learning algorithms to screen the most potent QoI-based fungicide combinations for wild-type (WT) and the G143A mutation of fungal cytochrome b. Based on in silico studies, mandestrobin emerged as the top binder for both WT Plasmopara viticola and WT Botrytis cinerea cytochrome b. Famoxadone appeared to be a versatile binder for G143A-mutated cytochrome b of both Plasmopara viticola and Botrytis cinerea. Thiram emerged as a reasonable, low-risk non-QoI fungicide that works on WT and G143A-mutated versions of both fungi. QSAR analysis revealed fenpropidin, fenoxanil, and ethaboxam non-QoIs to have a high affinity for G143A-mutated cytochrome b of Plasmopara viticola and Botrytis cinerea. Above-QoI and non-QoI fungicides can be considered for field studies in a fungicide management program against Plasmopara viticola- and Botrytis cinerea-based fungal infections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
坚定若雁完成签到,获得积分10
1秒前
1秒前
Gstar发布了新的文献求助20
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
serendipity发布了新的文献求助10
3秒前
复苏1234511完成签到 ,获得积分10
3秒前
无极微光应助fjg采纳,获得20
3秒前
3秒前
wenjing发布了新的文献求助10
4秒前
4秒前
Tracy发布了新的文献求助10
4秒前
水水发布了新的文献求助10
4秒前
哦大发布了新的文献求助10
4秒前
wylwyl发布了新的文献求助10
4秒前
4秒前
花椒泡茶完成签到 ,获得积分10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
石油醚完成签到,获得积分10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
思源应助寒冷的奇异果采纳,获得10
5秒前
烟花应助科研通管家采纳,获得20
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
木木应助科研通管家采纳,获得60
5秒前
自然的岱周完成签到,获得积分10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668611
求助须知:如何正确求助?哪些是违规求助? 4891907
关于积分的说明 15125212
捐赠科研通 4827584
什么是DOI,文献DOI怎么找? 2584674
邀请新用户注册赠送积分活动 1538485
关于科研通互助平台的介绍 1496799