亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data augmentation in extreme ultraviolet lithography simulation using convolutional neural network

卷积神经网络 计算机科学 振幅 衍射 算法 深度学习 训练集 人工神经网络 人工智能 模式识别(心理学) 光学 物理
作者
Hiroyoshi Tanabe,Atsushi Takahashi
出处
期刊:Journal of micro/nanopatterning, materials, and metrology [SPIE - International Society for Optical Engineering]
卷期号:21 (04) 被引量:6
标识
DOI:10.1117/1.jmm.21.4.041602
摘要

BackgroundIn the previous work, we developed a convolutional neural network (CNN), which reproduces the results of the rigorous electromagnetic (EM) simulations in a small mask area. The prediction time of CNN was 5000 times faster than the calculation time of EM simulation. We trained the CNN using 200,000 data, which were the results of EM simulation. Although the prediction time of CNN was very short, it took a long time to build a huge amount of the training data. Especially when we enlarge the mask area, the calculation time to prepare the training data becomes unacceptably long.AimReducing the calculation time to prepare the training data.ApproachWe apply data augmentation technique to increase the number of training data using limited original data. The training data of our CNN are the diffraction amplitudes of mask patterns. Assuming a periodic boundary condition, the diffraction amplitudes of the shifted or flipped mask pattern can be easily calculated using the diffraction amplitudes of the original mask pattern.ResultsThe number of training data after the data augmentation is multiplied by 200 from 2500 to 500,000. Using a large amount of training data, the validation loss of CNN was reduced. The accuracy of CNN with augmented data is verified by comparing the CNN predictions with the results of EM simulation.ConclusionsData augmentation technique is applied to the diffraction amplitude of the mask pattern. The data preparation time is reduced by a factor of 200. Our CNN almost reproduces the results of EM simulation. In this work, the mask patterns are restricted to line and space patterns. It is a challenge to build several CNNs for specific mask patterns or ultimately a single CNN for arbitrary mask patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助Magali采纳,获得10
8秒前
OCDer完成签到,获得积分0
31秒前
1分钟前
淡定醉易发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
搜集达人应助yao采纳,获得10
1分钟前
archer01完成签到,获得积分10
1分钟前
淡定醉易发布了新的文献求助10
1分钟前
dongyajingggggg完成签到,获得积分10
2分钟前
淡定醉易发布了新的文献求助10
2分钟前
2分钟前
淡定醉易发布了新的文献求助10
2分钟前
淡定醉易发布了新的文献求助10
3分钟前
3分钟前
温柔的天奇完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
yao发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
ln完成签到 ,获得积分10
3分钟前
4分钟前
Magali发布了新的文献求助10
4分钟前
4分钟前
zikncy发布了新的文献求助10
4分钟前
知行者完成签到 ,获得积分10
4分钟前
helpmepaper完成签到,获得积分0
4分钟前
5分钟前
5分钟前
共享精神应助zikncy采纳,获得10
5分钟前
5分钟前
大个应助科研通管家采纳,获得10
5分钟前
5分钟前
寒冷念文发布了新的文献求助10
6分钟前
6分钟前
科研通AI2S应助寒冷念文采纳,获得30
6分钟前
闪闪蜜粉完成签到 ,获得积分10
6分钟前
6分钟前
NexusExplorer应助风清扬采纳,获得30
7分钟前
7分钟前
7分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Impact of water dispenser establishment on drinking water availability and health status of peri-urban community 560
Implantable Technologies 500
Theories of Human Development 400
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3919900
求助须知:如何正确求助?哪些是违规求助? 3464948
关于积分的说明 10935401
捐赠科研通 3193223
什么是DOI,文献DOI怎么找? 1764528
邀请新用户注册赠送积分活动 854943
科研通“疑难数据库(出版商)”最低求助积分说明 794528