Hematologic cancer diagnosis and classification using machine and deep learning: State-of-the-art techniques and emerging research directives

计算机科学 人工智能 机器学习 疾病 深度学习 分类 癌症 医学物理学 重症监护医学 病理 医学 内科学
作者
Hema J Patel,Himal Shah,Gayatri Patel,Atul Patel
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:152: 102883-102883 被引量:16
标识
DOI:10.1016/j.artmed.2024.102883
摘要

Hematology is the study of diagnosis and treatment options for blood diseases, including cancer. Cancer is considered one of the deadliest diseases across all age categories. Diagnosing such a deadly disease at the initial stage is essential to cure the disease. Hematologists and pathologists rely on microscopic evaluation of blood or bone marrow smear images to diagnose blood-related ailments. The abundance of overlapping cells, cells of varying densities among platelets, non-illumination levels, and the amount of red and white blood cells make it more difficult to diagnose illness using blood cell images. Pathologists are required to put more effort into the traditional, time-consuming system. Nowadays, it becomes possible with machine learning and deep learning techniques, to automate the diagnostic processes, categorize microscopic blood cells, and improve the accuracy of the procedure and its speed as the models developed using these methods may guide an assisting tool. In this article, we have acquired, analyzed, scrutinized, and finally selected around 57 research papers from various machine learning and deep learning methodologies that have been employed in the diagnosis of leukemia and its classification over the past 20 years, which have been published between the years 2003 and 2023 by PubMed, IEEE, Science Direct, Google Scholar and other pertinent sources. Our primary emphasis is on evaluating the advantages and limitations of analogous research endeavors to provide a concise and valuable research directive that can be of significant utility to fellow researchers in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Bonnie采纳,获得10
1秒前
科研通AI6应助小懒采纳,获得10
1秒前
2秒前
jay发布了新的文献求助10
2秒前
5秒前
诱导效应发布了新的文献求助10
5秒前
张多发布了新的文献求助10
5秒前
钱钱钱发布了新的文献求助10
5秒前
BxChen发布了新的文献求助10
5秒前
Rita完成签到,获得积分10
6秒前
风雨霖霖完成签到 ,获得积分10
6秒前
科研通AI6应助小p采纳,获得30
7秒前
ZZZ完成签到,获得积分10
7秒前
7秒前
科研混子完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
marker_发布了新的文献求助10
9秒前
zcm应助罂粟采纳,获得10
9秒前
10秒前
wq发布了新的文献求助10
10秒前
bjf555发布了新的文献求助10
11秒前
11秒前
晏逸完成签到,获得积分10
11秒前
阳光青烟完成签到,获得积分10
11秒前
小鱼应助Fsy采纳,获得10
12秒前
夏至Kiki发布了新的文献求助10
12秒前
123完成签到,获得积分10
12秒前
闹铃儿发布了新的文献求助10
13秒前
诱导效应完成签到,获得积分10
14秒前
14秒前
14秒前
16秒前
16秒前
17秒前
斯文败类应助跳跃的大楚采纳,获得10
17秒前
科研通AI6应助平淡的怀亦采纳,获得30
17秒前
920713712发布了新的文献求助10
17秒前
Csy完成签到,获得积分10
18秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339864
求助须知:如何正确求助?哪些是违规求助? 4476554
关于积分的说明 13931817
捐赠科研通 4372145
什么是DOI,文献DOI怎么找? 2402294
邀请新用户注册赠送积分活动 1395155
关于科研通互助平台的介绍 1367201