最小边界框
水准点(测量)
跳跃式监视
计算机科学
方向(向量空间)
探测器
人工智能
目标检测
点(几何)
对象(语法)
可微函数
计算机视觉
比例(比率)
图像(数学)
模式识别(心理学)
数学
地理
地图学
几何学
数学分析
电信
作者
Xingyi Zhou,Dequan Wang,Philipp Krähenbühl,Valpreda, Emanuele,Camalleri, Manfredi,Zhao, Qi,Unger, Christian,Nagaraja, Naveen-Shankar,Martina, Maurizio,Stechele, Walter
出处
期刊:Schloss Dagstuhl - Leibniz-Zentrum für Informatik - Dagstuhl Research Online Publication Server (DROPS)
日期:2019-04-16
被引量:299
标识
DOI:10.48550/arxiv.1904.07850
摘要
Detection identifies objects as axis-aligned boxes in an image. Most successful object detectors enumerate a nearly exhaustive list of potential object locations and classify each. This is wasteful, inefficient, and requires additional post-processing. In this paper, we take a different approach. We model an object as a single point --- the center point of its bounding box. Our detector uses keypoint estimation to find center points and regresses to all other object properties, such as size, 3D location, orientation, and even pose. Our center point based approach, CenterNet, is end-to-end differentiable, simpler, faster, and more accurate than corresponding bounding box based detectors. CenterNet achieves the best speed-accuracy trade-off on the MS COCO dataset, with 28.1% AP at 142 FPS, 37.4% AP at 52 FPS, and 45.1% AP with multi-scale testing at 1.4 FPS. We use the same approach to estimate 3D bounding box in the KITTI benchmark and human pose on the COCO keypoint dataset. Our method performs competitively with sophisticated multi-stage methods and runs in real-time.
科研通智能强力驱动
Strongly Powered by AbleSci AI