亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Developing a machine learning-based prognosis and immunotherapeutic response signature in colorectal cancer: insights from ferroptosis, fatty acid dynamics, and the tumor microenvironment

肿瘤微环境 结直肠癌 签名(拓扑) 癌症研究 医学 免疫疗法 免疫系统 肿瘤科 癌症 免疫学 内科学 肿瘤细胞 几何学 数学
作者
Junchang Zhu,Jinyuan Zhang,Yunwei Lou,Yijie Zheng,Xuzhi Zheng,Wei Cen,Lechi Ye,Qiongying Zhang
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:15 被引量:2
标识
DOI:10.3389/fimmu.2024.1416443
摘要

Colorectal cancer (CRC) poses a challenge to public health and is characterized by a high incidence rate. This study explored the relationship between ferroptosis and fatty acid metabolism in the tumor microenvironment (TME) of patients with CRC to identify how these interactions impact the prognosis and effectiveness of immunotherapy, focusing on patient outcomes and the potential for predicting treatment response. Using datasets from multiple cohorts, including The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), we conducted an in-depth multi-omics study to uncover the relationship between ferroptosis regulators and fatty acid metabolism in CRC. Through unsupervised clustering, we discovered unique patterns that link ferroptosis and fatty acid metabolism, and further investigated them in the context of immune cell infiltration and pathway analysis. We developed the FeFAMscore, a prognostic model created using a combination of machine learning algorithms, and assessed its predictive power for patient outcomes and responsiveness to treatment. The FeFAMscore signature expression level was confirmed using RT-PCR, and ACAA2 progression in cancer was further verified. This study revealed significant correlations between ferroptosis regulators and fatty acid metabolism-related genes with respect to tumor progression. Three distinct patient clusters with varied prognoses and immune cell infiltration were identified. The FeFAMscore demonstrated superior prognostic accuracy over existing models, with a C-index of 0.689 in the training cohort and values ranging from 0.648 to 0.720 in four independent validation cohorts. It also responses to immunotherapy and chemotherapy, indicating a sensitive response of special therapies (e.g., anti-PD-1, anti-CTLA4, osimertinib) in high FeFAMscore patients. Ferroptosis regulators and fatty acid metabolism-related genes not only enhance immune activation, but also contribute to immune escape. Thus, the FeFAMscore, a novel prognostic tool, is promising for predicting both the prognosis and efficacy of immunotherapeutic strategies in patients with CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助大熊采纳,获得10
7秒前
传奇3应助英俊的小恐龙采纳,获得10
9秒前
eclo完成签到 ,获得积分10
14秒前
14秒前
25秒前
学术甜菜发布了新的文献求助10
32秒前
大熊发布了新的文献求助10
33秒前
传奇3应助学术甜菜采纳,获得30
49秒前
luohao完成签到,获得积分10
56秒前
colleenld完成签到,获得积分10
56秒前
学术甜菜完成签到,获得积分20
59秒前
CipherSage应助愤怒的梦曼采纳,获得10
1分钟前
1分钟前
蔡大大发布了新的文献求助10
2分钟前
2分钟前
gf完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
miketyson完成签到,获得积分10
3分钟前
拼命十三娘完成签到,获得积分20
3分钟前
3分钟前
andrele发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
andrele发布了新的文献求助10
4分钟前
cube半肥半瘦完成签到,获得积分10
4分钟前
4分钟前
xingsixs完成签到,获得积分10
5分钟前
5分钟前
andrele发布了新的文献求助10
5分钟前
FceEar完成签到,获得积分10
6分钟前
余馨怡完成签到,获得积分10
6分钟前
李健应助科研通管家采纳,获得10
6分钟前
脑洞疼应助科研通管家采纳,获得10
6分钟前
小冉完成签到 ,获得积分10
7分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210717
求助须知:如何正确求助?哪些是违规求助? 4387396
关于积分的说明 13662777
捐赠科研通 4247368
什么是DOI,文献DOI怎么找? 2330206
邀请新用户注册赠送积分活动 1327970
关于科研通互助平台的介绍 1280696