Optimizing Electronic Conductivity to Improve the Thick Battery Electrode Performance for Lithium-Ion Batteries

电极 材料科学 电池(电) 锂(药物) 导电体 电导率 碳纳米管 炭黑 复合材料 光电子学 纳米技术 化学 量子力学 内分泌学 物理 物理化学 天然橡胶 医学 功率(物理)
作者
Zhaoshun Wang,Zeyuan Li,Harsh Agarwal,Ryan M. Stephens,Ming Tang
出处
期刊:Meeting abstracts 卷期号:MA2024-01 (5): 709-709 被引量:1
标识
DOI:10.1149/ma2024-015709mtgabs
摘要

Thick battery electrode designs have attracted broad interest from the lithium-ion battery industry because they represent a promising approach to significantly increase the battery energy density at the cell level and reduce the materials and manufacturing cost at the same time. However, increasing the electrode thickness also increases the ionic and electronic transport distance, leading to inferior rate performance. Previous studies on improving thick electrode performance have mainly focused on the design and fabrication of three-dimensional electrode architecture (e.g. electrodes with low tortuosity porous channels) to facilitate ionic transport. On the other hand, how the electronic conductivity should be optimized for thick electrodes has received less attention. Several existing studies report the effect of adding carbon nanotubes on the thick electrode performance, but it is not clear how the results could be generalized to other types of conductive additives. In this study, we ask the questions: how does the electrical conductivity affect the rate performance of thick electrodes, and are there general criteria for determining the optimal amount of conductive additives? Using LiFePO 4 as a model system, we prepared a series of electrodes with different thickness and systematically varied electrical conductivity, which was achieved by adjusting the amount and ratios of two types of carbon additives, i.e. carbon black (C65) and vapor grown carbon nanofibers (VGCF). To obtain accurate readings of the intrinsic resistance of the LiFePO 4 composite electrodes, a thickness extrapolation method was applied to remove the contact resistance at the Al/LiFePO 4 and probe/LiFePO 4 interfaces. We discovered that while 2 wt% C65 is sufficient for thin electrodes (<50 μm), at least 5 wt% C65 is required to maximize the rate performance of thicker electrodes (>100 μm), see Figure 1a&b. Further study reveals the existence of a critical electrical conductivity : the electrode’s rate capability increases with the conductivity at but saturates above (Figure 1c). The optimal amount of conductive additive is thus determined by . For electrodes thicker than 100 μm, we discovered that is independent of electrode thickness and comparable to the ionic conductivity of the electrodes. For thinner electrodes, however, increases monotonically with the electrode thickness L . We show that this phenomenon could be explained by the competition between three types of resistance present in the electrode: charge transfer (R CT ), electrical (R elec ) and ionic (R ion ) resistances. Our prediction of the curve agrees with experiments, which could serve as a general guidance to the optimization of conductive additives for thick electrodes. Our study also reveals that the critical electrical conductivity could be most effectively achieved for thick electrodes via a combination of C65 and VGCF thanks to their complementary morphologies. While the fiber-shaped VGCF provides long-range pathways for electron conduction across the electrodes, the contact between particulate C65 and active materials facilitates the short-range electrical wiring. As a result, only 3 wt% of hybrid additives (2wt% C65 + 1wt% VGCF) is needed to reach , as opposed to 5 wt% of C65 only. Figure 1 . Rate performance of electrode with different carbon amount ( a ) Thin electrode and ( b ) 150 μm electrodes. ( c ) Rate capability of electrode with different electrical conductivity. Acknowledgement This work is supported by Shell International Exploration and Production, Inc. Reference Kuang, Y.; Chen, C.; Kirsch, D.; Hu, L., Thick Electrode Batteries: Principles, Opportunities, and Challenges. Advanced Energy Materials 2019, 9 (33). Ju, Z.; Zhang, X.; King, S. T.; Quilty, C. D.; Zhu, Y.; Takeuchi, K. J.; Takeuchi, E. S.; Bock, D. C.; Wang, L.; Marschilok, A. C.; Yu, G., Unveiling the dimensionality effect of conductive fillers in thick battery electrodes for high-energy storage systems. Applied Physics Reviews 2020, 7 (4). Tian, R.; Alcala, N.; O’Neill, S. J. K.; Horvath, D. V.; Coelho, J.; Griffin, A. J.; Zhang, Y.; Nicolosi, V.; O’Dwyer, C.; Coleman, J. N., Quantifying the Effect of Electronic Conductivity on the Rate Performance of Nanocomposite Battery Electrodes. ACS Appl Energ Mater 2020, 3 (3), 2966-2974. Lee, B.-S.; Wu, Z.; Petrova, V.; Xing, X.; Lim, H.-D.; Liu, H.; Liu, P., Analysis of Rate-Limiting Factors in Thick Electrodes for Electric Vehicle Applications. J Electrochem Soc 2018, 165 (3), A525-A533. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nniu完成签到 ,获得积分10
刚刚
阳光大山发布了新的文献求助10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得30
刚刚
英姑应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
冷傲如风发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
lzm完成签到,获得积分10
1秒前
同瓜不同命完成签到,获得积分10
1秒前
bkagyin应助科研通管家采纳,获得30
1秒前
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得30
1秒前
慕青应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得30
2秒前
慕青应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
李健应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
储祥群发布了新的文献求助10
3秒前
3秒前
豆沙包没有豆完成签到,获得积分10
3秒前
松松松发布了新的文献求助10
3秒前
阿不思发布了新的文献求助10
4秒前
5秒前
打打应助zqc333采纳,获得10
5秒前
5秒前
6秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342994
求助须知:如何正确求助?哪些是违规求助? 4478635
关于积分的说明 13940380
捐赠科研通 4375604
什么是DOI,文献DOI怎么找? 2404155
邀请新用户注册赠送积分活动 1396661
关于科研通互助平台的介绍 1369026