DNA Binding Protein Prediction based on Multi-feature Deep Metatransfer Learning

计算机科学 人工智能 计算生物学 特征(语言学) 深度学习 生物 语言学 哲学
作者
Chunliang Wang,Fanfan kong,Yu Wang,Hongjie Wu,Jun Yan
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19
标识
DOI:10.2174/0115748936290782240624114950
摘要

Background: In recent years, the rapid development of deep learning technology has had a significant impact on the prediction of DNA-binding proteins. Deep neural networks can automatically learn complex features in protein and DNA sequences, improving prediction accuracy and generalization capabilities. Objective: This article mainly establishes a meta-migration model and combines it with a deep learning model to predict DNA-binding proteins. Methods: This study introduces a meta-learning algorithm based on transfer learning, which helps achieve rapid learning and adaptation to new tasks. In addition, normalized Moreau-Broto autocorrelation attributes (NMBAC), position-specific scoring matrix-discrete cosine transform (PSSMDCT), and position-specific scoring matrix-discrete wavelet transform (PSSM-DWT) are also used for feature extraction. Finally, the prediction of DBP is achieved through the deep neural network model based on the attention mechanism. Results: This paper first establishes the basis of deep meta-transfer learning and uses the PDB186 data set as the benchmark to extract features using NMBAC, PSSM-DCT, and PSSM-DWT, respectively, and compare the fused features in pairs, and finally obtain the fused feature process. Through deep learning processing, it is concluded that the fused feature prediction effect is the best. At the same time, compared with the currently popular models, there are obvious improvements in the ACC, MCC, SN and Spec evaluation indicators. Conclusion: Finally, it was concluded that the method used in this article can effectively predict DNA-binding proteins and show more significant performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lps关闭了lps文献求助
刚刚
刚刚
科研完成签到,获得积分10
刚刚
小芒果完成签到,获得积分10
刚刚
YYy发布了新的文献求助10
1秒前
阳光晓兰发布了新的文献求助10
1秒前
潇洒的奇异果完成签到,获得积分10
2秒前
w8290发布了新的文献求助20
2秒前
隐形曼青应助包容的夏蓉采纳,获得10
2秒前
若水三芊发布了新的文献求助15
3秒前
顾矜应助美好斓采纳,获得30
3秒前
5秒前
yanyan发布了新的文献求助10
5秒前
hhppt完成签到,获得积分10
6秒前
米子完成签到 ,获得积分10
6秒前
6秒前
小二郎应助曲奇采纳,获得10
6秒前
甜甜圈发布了新的文献求助10
7秒前
荔枝发布了新的文献求助10
8秒前
陶1122完成签到,获得积分10
9秒前
大个应助第八维采纳,获得10
9秒前
Weiyu完成签到 ,获得积分10
9秒前
10秒前
无极微光应助00采纳,获得20
10秒前
pp发布了新的文献求助10
10秒前
11秒前
不再方里发布了新的文献求助10
12秒前
陶1122发布了新的文献求助10
12秒前
13秒前
甜橙汁发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
传奇3应助铁柱采纳,获得10
15秒前
15秒前
zc发布了新的文献求助10
16秒前
yanyan完成签到,获得积分10
16秒前
乐乐应助csl采纳,获得10
16秒前
16秒前
16秒前
gaohui8010完成签到,获得积分20
17秒前
卡皮巴拉布丁完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511743
求助须知:如何正确求助?哪些是违规求助? 4606258
关于积分的说明 14498878
捐赠科研通 4541669
什么是DOI,文献DOI怎么找? 2488572
邀请新用户注册赠送积分活动 1470667
关于科研通互助平台的介绍 1442962