A Study on the Effectiveness of Spatial Filters on Thermal Image Pre-Processing and Correlation Technique for Quantifying Defect Size

热成像 图像处理 信号处理 滤波器(信号处理) 高斯分布 高斯滤波器 中值滤波器 空间滤波器 图像质量 高斯噪声 图像分辨率 人工智能 计算机科学 材料科学 电子工程 计算机视觉 光学 工程类 图像(数学) 数字信号处理 物理 红外线的 量子力学
作者
Ho Jong Kim,Anuja Shrestha,Eliza Sapkota,Anwit Pokharel,Sarvesh Pandey,Cheol Sang Kim,Ranjit Shrestha
出处
期刊:Sensors [MDPI AG]
卷期号:22 (22): 8965-8965 被引量:16
标识
DOI:10.3390/s22228965
摘要

Thermal imaging plays a vital role in structural health monitoring of various materials and provides insight into the defect present due to aging, deterioration, and fault during construction. This study investigated the effectiveness of spatial filters during pre-processing of thermal images and a correlation technique in post-processing, as well as exploited its application in non-destructive testing and evaluation of defects in steel structures. Two linear filters (i.e., Gaussian and Window Averaging) and a non-linear filter (i.e., Median) were implemented during pre-processing of a pulsed thermography image sequence. The effectiveness of implemented filters was then assessed using signal to noise ratio as a quality metric. The result of pre-processing revealed that each implemented filter is capable of reducing impulse noise and producing high-quality images; additionally, when comparing the signal to noise ratio, the Gaussian filter dominated both Window Averaging and Median filters. Defect size was determined using a correlation technique on a sequence of pulsed thermography images that had been pre-processed with a Gaussian filter. Finally, it is concluded that the correlation technique could be applied to the fast measurement of defect size, even though the accuracy may depend on the detection limit of thermography and defect size to depth ratio.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aliu发布了新的文献求助30
3秒前
所所应助显隐采纳,获得10
3秒前
科研通AI6应助易安采纳,获得30
3秒前
GZPFJMU发布了新的文献求助10
3秒前
li发布了新的文献求助10
5秒前
charles发布了新的文献求助10
5秒前
6秒前
7秒前
XXXX发布了新的文献求助10
8秒前
隐形曼青应助七星茶采纳,获得30
9秒前
10秒前
li完成签到,获得积分10
11秒前
GZPFJMU完成签到,获得积分10
12秒前
体贴柜子完成签到 ,获得积分10
13秒前
Bystander完成签到 ,获得积分10
13秒前
温柔的中蓝完成签到,获得积分10
13秒前
14秒前
14秒前
AspenW发布了新的文献求助10
14秒前
Xie完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
Szw666完成签到,获得积分10
17秒前
yy完成签到,获得积分10
17秒前
曦耀发布了新的文献求助10
17秒前
17秒前
贪玩的秋柔应助danli采纳,获得10
18秒前
科研通AI6应助dd采纳,获得10
18秒前
慕青应助Tigher采纳,获得10
18秒前
田様应助显隐采纳,获得10
19秒前
19秒前
XXXX完成签到,获得积分10
20秒前
02发布了新的文献求助10
21秒前
22秒前
22秒前
科研通AI6应助juan采纳,获得10
23秒前
25秒前
阳光的荠发布了新的文献求助10
28秒前
追光者完成签到,获得积分10
28秒前
思源应助孝顺的班采纳,获得10
28秒前
张老涵发布了新的文献求助30
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638086
求助须知:如何正确求助?哪些是违规求助? 4744566
关于积分的说明 15001034
捐赠科研通 4796214
什么是DOI,文献DOI怎么找? 2562406
邀请新用户注册赠送积分活动 1521889
关于科研通互助平台的介绍 1481759