亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Digital Marker for Early Screening of Mild Cognitive Impairment Through Hand and Eye Movement Analysis in Virtual Reality Using Machine Learning: First Validation Study

交互式信息亭 背景(考古学) 医学 认知 机器学习 人工智能 计算机科学 物理医学与康复 心理学 精神科 古生物学 操作系统 生物
作者
Yuwon Kim,Jinseok Park,Hojin Choi,Martin Loeser,Hokyoung Ryu,Kyoungwon Seo
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e48093-e48093 被引量:19
标识
DOI:10.2196/48093
摘要

Background With the global rise in Alzheimer disease (AD), early screening for mild cognitive impairment (MCI), which is a preclinical stage of AD, is of paramount importance. Although biomarkers such as cerebrospinal fluid amyloid level and magnetic resonance imaging have been studied, they have limitations, such as high cost and invasiveness. Digital markers to assess cognitive impairment by analyzing behavioral data collected from digital devices in daily life can be a new alternative. In this context, we developed a “virtual kiosk test” for early screening of MCI by analyzing behavioral data collected when using a kiosk in a virtual environment. Objective We aimed to investigate key behavioral features collected from a virtual kiosk test that could distinguish patients with MCI from healthy controls with high statistical significance. Also, we focused on developing a machine learning model capable of early screening of MCI based on these behavioral features. Methods A total of 51 participants comprising 20 healthy controls and 31 patients with MCI were recruited by 2 neurologists from a university hospital. The participants performed a virtual kiosk test—developed by our group—where we recorded various behavioral data such as hand and eye movements. Based on these time series data, we computed the following 4 behavioral features: hand movement speed, proportion of fixation duration, time to completion, and the number of errors. To compare these behavioral features between healthy controls and patients with MCI, independent-samples 2-tailed t tests were used. Additionally, we used these behavioral features to train and validate a machine learning model for early screening of patients with MCI from healthy controls. Results In the virtual kiosk test, all 4 behavioral features showed statistically significant differences between patients with MCI and healthy controls. Compared with healthy controls, patients with MCI had slower hand movement speed (t49=3.45; P=.004), lower proportion of fixation duration (t49=2.69; P=.04), longer time to completion (t49=–3.44; P=.004), and a greater number of errors (t49=–3.77; P=.001). All 4 features were then used to train a support vector machine to distinguish between healthy controls and patients with MCI. Our machine learning model achieved 93.3% accuracy, 100% sensitivity, 83.3% specificity, 90% precision, and 94.7% F1-score. Conclusions Our research preliminarily suggests that analyzing hand and eye movements in the virtual kiosk test holds potential as a digital marker for early screening of MCI. In contrast to conventional biomarkers, this digital marker in virtual reality is advantageous as it can collect ecologically valid data at an affordable cost and in a short period (5-15 minutes), making it a suitable means for early screening of MCI. We call for further studies to confirm the reliability and validity of this approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
qlq完成签到,获得积分20
5秒前
qlq发布了新的文献求助30
11秒前
17秒前
风清扬应助qlq采纳,获得30
31秒前
50秒前
李健应助堕落的飞猪采纳,获得10
51秒前
53秒前
pure123完成签到,获得积分10
53秒前
wenliu完成签到,获得积分10
53秒前
普通用户30号完成签到 ,获得积分10
55秒前
wenliu发布了新的文献求助10
56秒前
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
dtsgydbd发布了新的文献求助10
1分钟前
饼子发布了新的文献求助10
1分钟前
唐泽雪穗发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
wrl2023完成签到,获得积分10
1分钟前
魏佳奇发布了新的文献求助10
1分钟前
赘婿应助dtsgydbd采纳,获得10
2分钟前
从容芮应助科研通管家采纳,获得50
2分钟前
GingerF应助科研通管家采纳,获得60
2分钟前
从容芮应助科研通管家采纳,获得50
2分钟前
从容芮应助科研通管家采纳,获得50
2分钟前
从容芮应助科研通管家采纳,获得50
2分钟前
从容芮应助科研通管家采纳,获得50
2分钟前
tuanheqi应助科研通管家采纳,获得150
2分钟前
从容芮应助科研通管家采纳,获得50
2分钟前
从容芮应助科研通管家采纳,获得50
2分钟前
cc完成签到,获得积分10
2分钟前
334niubi666完成签到 ,获得积分10
2分钟前
丘比特应助魏佳奇采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186303
求助须知:如何正确求助?哪些是违规求助? 4371588
关于积分的说明 13612337
捐赠科研通 4224047
什么是DOI,文献DOI怎么找? 2316798
邀请新用户注册赠送积分活动 1315440
关于科研通互助平台的介绍 1264547