SDV-LOAM: Semi-Direct Visual–LiDAR Odometry and Mapping

激光雷达 计算机视觉 人工智能 里程计 计算机科学 视觉里程计 点云 同时定位和映射 遥感 移动机器人 地理 机器人
作者
Zikang Yuan,Qingjie Wang,Ken Cheng,Tianyu Hao,Xin Yang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (9): 11203-11220 被引量:48
标识
DOI:10.1109/tpami.2023.3262817
摘要

Visual-LiDAR odometry and mapping (V-LOAM), which fuses complementary information of a camera and a LiDAR, is an attractive solution for accurate and robust pose estimation and mapping. However, existing systems could suffer nontrivial tracking errors arising from 1) association between 3D LiDAR points and sparse 2D features (i.e., 3D-2D depth association) and 2) obvious drifts in the vertical direction in the 6-degree of freedom (DOF) sweep-to-map optimization. In this paper, we present SDV-LOAM which incorporates a semi-direct visual odometry and an adaptive sweep-to-map LiDAR odometry to effectively avoid the above-mentioned errors and in turn achieve high tracking accuracy. The visual module of our SDV-LOAM directly extracts high-gradient pixels where 3D LiDAR points project on for tracking. To avoid the problem of large scale difference between matching frames in the VO, we design a novel point matching with propagation method to propagate points of a host frame to an intermediate keyframe which is closer to the current frame to reduce scale differences. To reduce the pose estimation drifts in the vertical direction, our LiDAR module employs an adaptive sweep-to-map optimization method which automatically choose to optimize 3 horizontal DOF or 6 full DOF pose according to the richness of geometric constraints in the vertical direction. In addition, we propose a novel sweep reconstruction method which can increase the input frequency of LiDAR point clouds to the same frequency as the camera images, and in turn yield a high frequency output of the LiDAR odometry in theory. Experimental results demonstrate that our SDV-LOAM ranks 8th on the KITTI odometry benchmark which outperforms most LiDAR/visual-LiDAR odometry systems. In addition, our visual module outperforms state-of-the-art visual odometry and our adaptive sweep-to-map optimization can improve the performance of several existing open-sourced LiDAR odometry systems. Moreover, we demonstrate our SDV-LOAM on a custom-built hardware platform in large-scale environments which achieves both a high accuracy and output frequency. We have released the source code of our SDV-LOAM for the development of the community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎冰淇淋完成签到 ,获得积分10
刚刚
眼睛大世开完成签到,获得积分10
1秒前
ding应助lingVing瑜采纳,获得10
1秒前
张龙达发布了新的文献求助10
1秒前
1秒前
端庄的鹭洋关注了科研通微信公众号
1秒前
LL完成签到,获得积分20
2秒前
2秒前
bluemary发布了新的文献求助10
2秒前
3秒前
田様应助HC3采纳,获得10
3秒前
3秒前
3秒前
岁城完成签到,获得积分10
4秒前
yzz发布了新的文献求助10
4秒前
Bi完成签到,获得积分10
4秒前
田国兵发布了新的文献求助10
5秒前
梦凡完成签到,获得积分10
5秒前
科研通AI6应助control采纳,获得10
5秒前
共享精神应助持刀的辣条采纳,获得10
5秒前
6秒前
搜集达人应助笨DD采纳,获得10
6秒前
彩色德天发布了新的文献求助10
7秒前
cai完成签到,获得积分10
7秒前
7秒前
yzxzdm完成签到 ,获得积分10
7秒前
JM发布了新的文献求助10
7秒前
kang完成签到 ,获得积分10
8秒前
xixi完成签到,获得积分20
8秒前
面包发布了新的文献求助10
8秒前
可爱的函函应助lemono_o采纳,获得10
8秒前
杨琳发布了新的文献求助10
8秒前
9秒前
9秒前
做的出来完成签到,获得积分10
10秒前
略略略发布了新的文献求助10
10秒前
zenmefeishi发布了新的文献求助10
10秒前
丘比特应助十二采纳,获得10
11秒前
12秒前
复杂的雨寒完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5441179
求助须知:如何正确求助?哪些是违规求助? 4552035
关于积分的说明 14233318
捐赠科研通 4473012
什么是DOI,文献DOI怎么找? 2451153
邀请新用户注册赠送积分活动 1442102
关于科研通互助平台的介绍 1418298