Gram-scale synthesis and unraveling the activity origin of atomically dispersed Co-N4O sites toward superior electrocatalytic oxygen reduction

电催化剂 催化作用 碳纳米纤维 电解质 析氧 材料科学 化学工程 化学 纳米技术 电化学 电极 碳纳米管 物理化学 工程类 有机化学
作者
Sike Zhang,Qixing Zhou,Linya Fang,Rui Wang,Tingyu Lu,Qun Zhao,Xuefang Gu,Shu Tian,Lin Xu,Huan Pang,Jun Yang,Yawen Tang,Shuhui Sun
出处
期刊:Applied Catalysis B-environmental [Elsevier BV]
卷期号:328: 122489-122489 被引量:22
标识
DOI:10.1016/j.apcatb.2023.122489
摘要

Exploring highly efficient nonprecious metal-based single-atom catalysts (SACs) toward the electrocatalytic oxygen reduction reaction (ORR) is critical for the sustainable development of ORR-related energy conversion and storage systems. However, the scalable synthesis, delicate regulation of the coordination environment and molecular-level elucidation of the electrocatalytic mechanism remain challenging. Herein, we report a facile gram-scale synthesis of atomically dispersed Co sites anchored on N-doped carbon nanofibers (noted as Co-SA@N-CNFs) via a reliable predesigned phenolic resin-mediated strategy for efficient oxygen reduction electrocatalysis. The local coordination configuration of the single-atomic Co sites is proposed as the Co-N4O moiety with one O atom in the axial direction perpendicular to the Co-N4 plane. Theoretical calculations uncover that, compared with the common Co-N4 single sites, the formation of Co-N4O configuration is beneficial to reduce the reaction energy barrier, adjust the bond length between the metal sites and the intermediates, and also increase the electric conductivity. Therefore, the Co-SA@N-CNFs demonstrated distinguished ORR activity, outstanding electrochemical stability and methanol tolerance in KOH electrolyte. Furthermore, when assembled in liquid and flexible solid-state rechargeable zinc-air batteries (ZABs), the Co-SA@N-CNFs-equipped ZABs exhibited higher power densities, larger specific capacities and extraordinary cycling performance, compared with the Pt/C-based ZABs. The simple and robust methodology for the mass production of SACs and the engineered coordination environment for performance optimization inspire the future design of a wide range of SACs for energy devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
源主儿发布了新的文献求助30
1秒前
sunfenghong发布了新的文献求助10
1秒前
xxxr完成签到,获得积分10
1秒前
4秒前
Lucas应助垃圾桶采纳,获得10
5秒前
Cherish囡囡发布了新的文献求助10
5秒前
6秒前
啦啦啦完成签到 ,获得积分10
6秒前
缓慢听枫完成签到,获得积分10
7秒前
8秒前
汤汤发布了新的文献求助10
9秒前
Owen应助Lim采纳,获得10
10秒前
sunfenghong完成签到,获得积分10
12秒前
林秋沐发布了新的文献求助10
12秒前
Ava应助Li采纳,获得10
12秒前
khh完成签到 ,获得积分10
15秒前
深情安青应助林秋沐采纳,获得10
16秒前
科研通AI2S应助明理怜烟采纳,获得10
17秒前
量子星尘发布了新的文献求助20
18秒前
机灵的幼荷完成签到,获得积分10
19秒前
20秒前
lucky珠完成签到 ,获得积分10
21秒前
Cherish囡囡完成签到,获得积分20
21秒前
赘婿应助ZZZ采纳,获得10
21秒前
HZQ应助耄耋科研人采纳,获得60
24秒前
Hanaooooo发布了新的文献求助10
24秒前
D_Daying完成签到 ,获得积分10
25秒前
科研通AI5应助lucky采纳,获得10
29秒前
ZYB12321完成签到,获得积分10
32秒前
34秒前
xia完成签到,获得积分10
34秒前
36秒前
Conner完成签到,获得积分10
37秒前
He发布了新的文献求助10
37秒前
40秒前
超级的白开水完成签到,获得积分10
41秒前
花与爱发布了新的文献求助10
41秒前
完美世界应助Chen采纳,获得30
42秒前
45秒前
量子星尘发布了新的文献求助10
45秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4219259
求助须知:如何正确求助?哪些是违规求助? 3753021
关于积分的说明 11800605
捐赠科研通 3417242
什么是DOI,文献DOI怎么找? 1875436
邀请新用户注册赠送积分活动 929266
科研通“疑难数据库(出版商)”最低求助积分说明 837982