Integrating Cross‐Scale Attention With Atrous Spatial Pyramid Pooling for Accurate Optic Disc and Cup Segmentation

联营 棱锥(几何) 人工智能 计算机科学 分割 比例(比率) 计算机视觉 地图学 数学 几何学 地理
作者
Chenglu Zong,W. Gao,Yu Fang,Fengjuan Gao,Zuxiang Wang
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:35 (5)
标识
DOI:10.1002/ima.70204
摘要

ABSTRACT The Cup to Disc Ratio (CDR) is a valuable metric for assessing the relative size of the Optic Cup (OC) and Optic Disc (OD), playing a crucial role in glaucoma diagnosis. Accurate segmentation of the OC and OD is therefore the first step toward reliable glaucoma detection. However, precise segmentation is challenging due to the presence of blood vessels that traverse the OC and OD regions, as well as the blurred boundaries and relatively small proportions of the OC and OD. To address these challenges, Atrous Spatial Pyramid CrossFormer‐U‐Net (ACC‐U‐Net) is proposed to achieve accurate OC and OD segmentation. CrossFormer is integrated into the encoder to enhance the integrity of the OC and OD segmentation boundaries by constructing global attention mechanisms in both the horizontal and vertical directions. Additionally, an Atrous Spatial Pyramid Pooling (ASPP) head is incorporated at the end of the decoder, allowing the model to capture multi‐level feature information of the OC and OD through multiple parallel dilated convolutions, which improves the segmentation accuracy of both the OC, OD, and their irregular boundaries. Finally, Cross Entropy and Dice (CD) Loss is introduced to enhance the model's focus on the OC, which solves the problem of the OC being easily overlooked by the model due to its small proportion. Ablation studies and comparative experiments are performed on three publicly available datasets. Compared to U‐Net, the proposed ACC‐U‐Net shows significant improvements in segmentation accuracy, with mean Intersection over Union (mIoU), mean Dice, and mean Accuracy (mACC) increasing by 9.96%/2.75%/4.54%, 2.65%/2.94%/5.31%, and 5.89%/5.57%/4.21%, respectively. Moreover, the proposed model outperforms nine other models in segmentation accuracy on three datasets. Thus, ACC‐U‐Net accurately segments the OC and OD, thus providing precise CDR values that could assist in the diagnosis of glaucoma. Source code and pretrained models are available at: https://github.com/zong1019/segmentation‐OCOD.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助cccc采纳,获得10
1秒前
2秒前
2秒前
cui完成签到,获得积分10
4秒前
万能图书馆应助失眠芷蕊采纳,获得10
5秒前
6秒前
英俊的铭应助27采纳,获得10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
顾宇发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
白玄发布了新的文献求助10
11秒前
11秒前
11秒前
走四方完成签到,获得积分10
12秒前
科研通AI6应助程雯慧采纳,获得30
13秒前
BINGBING1230发布了新的文献求助10
14秒前
14秒前
姜明哲发布了新的文献求助10
14秒前
科研通AI6应助陈勇杰采纳,获得10
15秒前
白小橘完成签到 ,获得积分10
15秒前
jiangsisi发布了新的文献求助30
16秒前
16秒前
科研通AI2S应助顏泰楊采纳,获得10
16秒前
七安发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
不安青牛应助干净秋寒采纳,获得10
19秒前
李爱国应助yi采纳,获得10
19秒前
文静涵梅发布了新的文献求助10
20秒前
20秒前
20秒前
细心擎呢完成签到 ,获得积分10
21秒前
机灵筮发布了新的文献求助10
22秒前
星辰大海应助奇迹少年采纳,获得10
23秒前
cc发布了新的文献求助10
23秒前
果冻完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5059688
求助须知:如何正确求助?哪些是违规求助? 4284352
关于积分的说明 13351080
捐赠科研通 4101792
什么是DOI,文献DOI怎么找? 2245799
邀请新用户注册赠送积分活动 1251584
关于科研通互助平台的介绍 1182238