Learning Long- and Short-term Dependencies for Improving Drug-Target Binding Affinity Prediction using Transformer and Edge Contraction Pooling

联营 卷积神经网络 计算机科学 人工智能 变压器 特征学习 图形 药物发现 机器学习 数据挖掘 模式识别(心理学) 生物 工程类 生物信息学 理论计算机科学 电压 电气工程
作者
Min Gao,Shaohua Jiang,Weibin Ding,Ting Xu,Zhijian Lyu
出处
期刊:Journal of Bioinformatics and Computational Biology [Imperial College Press]
卷期号:22 (01)
标识
DOI:10.1142/s0219720023500300
摘要

The accurate identification of drug-target affinity (DTA) is crucial for advancements in drug discovery and development. Many deep learning-based approaches have been devised to predict drug-target binding affinity accurately, exhibiting notable improvements in performance. However, the existing prediction methods often fall short of capturing the global features of proteins. In this study, we proposed a novel model called ETransDTA, specifically designed for predicting drug-target binding affinity. ETransDTA combines convolutional layers and transformer, allowing for the simultaneous extraction of both global and local features of target proteins. Additionally, we have integrated a new graph pooling mechanism into the topology adaptive graph convolutional network (TAGCN) to enhance its capacity for learning feature representations of chemical compounds. The proposed ETransDTA model has been evaluated using the Davis and Kinase Inhibitor BioActivity (KIBA) datasets, consistently outperforming other baseline methods. The evaluation results on the KIBA dataset reveal that our model achieves the lowest mean square error (MSE) of 0.125, representing a 0.6% reduction compared to the lowest-performing baseline method. Furthermore, the incorporation of queries, keys and values produced by the stacked convolutional neural network (CNN) enables our model to better integrate the local and global context of protein representation, leading to further improvements in the accuracy of DTA prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助小丽酱采纳,获得10
刚刚
头发多多完成签到,获得积分10
1秒前
1秒前
essemmy发布了新的文献求助50
2秒前
theforth发布了新的文献求助10
2秒前
3秒前
科研通AI5应助黑白画采纳,获得10
3秒前
zho应助李剑鸿采纳,获得10
3秒前
Elsa完成签到,获得积分10
5秒前
yy关闭了yy文献求助
5秒前
YOYO完成签到,获得积分10
5秒前
cfz发布了新的文献求助10
5秒前
6秒前
夏子墨发布了新的文献求助10
7秒前
8秒前
小二郎应助memory采纳,获得10
8秒前
毒蛇如我发布了新的文献求助10
8秒前
10秒前
11秒前
echo0411完成签到,获得积分10
11秒前
才欣宇完成签到,获得积分10
12秒前
12秒前
12秒前
欣慰水蓝发布了新的文献求助10
13秒前
13秒前
考博圣体完成签到 ,获得积分10
13秒前
从容的巧曼完成签到 ,获得积分10
13秒前
夏昱完成签到,获得积分10
14秒前
15秒前
小二发布了新的文献求助10
16秒前
melon发布了新的文献求助10
16秒前
子非魚发布了新的文献求助10
16秒前
廾匸发布了新的文献求助10
17秒前
FF完成签到 ,获得积分10
18秒前
zho应助刻苦雪晴采纳,获得10
18秒前
ComeOn发布了新的文献求助10
19秒前
19秒前
迷人的灵萱完成签到 ,获得积分10
19秒前
小超超完成签到 ,获得积分10
20秒前
王爷教你白给完成签到,获得积分10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792079
求助须知:如何正确求助?哪些是违规求助? 3336334
关于积分的说明 10280285
捐赠科研通 3052927
什么是DOI,文献DOI怎么找? 1675426
邀请新用户注册赠送积分活动 803446
科研通“疑难数据库(出版商)”最低求助积分说明 761349