Vision Graph Non-Contrastive Learning for Audio Deepfake Detection with Limited Labels

计算机科学 图形 人工智能 自然语言处理 理论计算机科学
作者
Falih Gozi Febrinanto,Kristen Moore,Chandra Thapa,Jiangang Ma,Vidya Saikrishna,Feng Xia
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2501.04942
摘要

Recent advancements in audio deepfake detection have leveraged graph neural networks (GNNs) to model frequency and temporal interdependencies in audio data, effectively identifying deepfake artifacts. However, the reliance of GNN-based methods on substantial labeled data for graph construction and robust performance limits their applicability in scenarios with limited labeled data. Although vast amounts of audio data exist, the process of labeling samples as genuine or fake remains labor-intensive and costly. To address this challenge, we propose SIGNL (Spatio-temporal vIsion Graph Non-contrastive Learning), a novel framework that maintains high GNN performance in low-label settings. SIGNL constructs spatio-temporal graphs by representing patches from the audio's visual spectrogram as nodes. These graph structures are modeled using vision graph convolutional (GC) encoders pre-trained through graph non-contrastive learning, a label-free that maximizes the similarity between positive pairs. The pre-trained encoders are then fine-tuned for audio deepfake detection, reducing reliance on labeled data. Experiments demonstrate that SIGNL outperforms state-of-the-art baselines across multiple audio deepfake detection datasets, achieving the lowest Equal Error Rate (EER) with as little as 5% labeled data. Additionally, SIGNL exhibits strong cross-domain generalization, achieving the lowest EER in evaluations involving diverse attack types and languages in the In-The-Wild dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大脸猫4811发布了新的文献求助10
刚刚
苹果妙之发布了新的文献求助10
刚刚
1秒前
想喝奶茶发布了新的文献求助10
1秒前
hujunqiu发布了新的文献求助10
1秒前
Mnipwefjgj311完成签到,获得积分10
1秒前
落寞怜雪完成签到,获得积分10
2秒前
2秒前
2秒前
木木完成签到,获得积分10
2秒前
氿瑛发布了新的文献求助10
2秒前
2秒前
LYF发布了新的文献求助10
3秒前
艾原发布了新的文献求助10
4秒前
4秒前
albertwang完成签到 ,获得积分10
5秒前
罗4完成签到,获得积分10
6秒前
NexusExplorer应助lll采纳,获得10
6秒前
天气预报发布了新的文献求助10
7秒前
Woo发布了新的文献求助10
8秒前
diode发布了新的文献求助30
8秒前
777完成签到,获得积分10
8秒前
sxyyy发布了新的文献求助10
8秒前
毛球小狐狸完成签到,获得积分10
8秒前
怡然新之完成签到 ,获得积分10
8秒前
苹果妙之完成签到,获得积分10
8秒前
前夜发布了新的文献求助10
9秒前
研友_VZG7GZ应助海贵采纳,获得10
9秒前
思源应助大脸猫4811采纳,获得10
9秒前
10秒前
武雨珍完成签到,获得积分10
11秒前
酷波er应助超帅鸣凤采纳,获得10
13秒前
13秒前
可爱的函函应助睿籽采纳,获得10
13秒前
Arthur完成签到,获得积分10
13秒前
积极的奇异果完成签到 ,获得积分10
14秒前
14秒前
杨帆完成签到,获得积分10
14秒前
ding应助ldp采纳,获得10
14秒前
高胖发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545545
求助须知:如何正确求助?哪些是违规求助? 4631578
关于积分的说明 14621138
捐赠科研通 4573196
什么是DOI,文献DOI怎么找? 2507417
邀请新用户注册赠送积分活动 1484163
关于科研通互助平台的介绍 1455383