已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of a radiopathomics model for predicting liver metastases of colorectal cancer

无线电技术 医学 结直肠癌 接收机工作特性 神经组阅片室 数据集 放射科 人工智能 癌症 内科学 计算机科学 神经学 精神科
作者
Jing Hou,Hao Di,Xuejun Liu,Mingjuan Cui,Kuijin Xue,Dongsheng Wang,Jun-Hao Zhang,Yun Lu,Guangye Tian,Shanglong Liu
出处
期刊:European Radiology [Springer Nature]
卷期号:35 (6): 3409-3417 被引量:4
标识
DOI:10.1007/s00330-024-11198-1
摘要

Abstract Objective To compare the ability of a model based on CT radiomics features, a model based on clinical data, and a fusion model based on a combination of both radiomics and clinical data to predict the risk of liver metastasis after surgery for colorectal cancer. Methods Two hundred and twelve patients with pathologically confirmed colorectal cancer were divided into a training set ( n = 148) and a validation set ( n = 64). Radiomics features from the most recent CT scans and clinical data obtained before surgery were extracted. Random forest models were trained to predict tumors with clinical data and evaluated using the area under the receiver-operating characteristic curve (AUC) and other metrics on the validation set. Results Fourteen features were selected to establish the radiomics model, which yielded an AUC of 0.751 for the training set and an AUC of 0.714 for the test set. The fusion model, based on a combination of the radiomics signature and clinical data, showed good performance in both the training set (AUC 0.952) and the test set (AUC 0.761). Conclusion We have developed a fusion model that integrates radiomics features with clinical data. This fusion model could serve as a non-invasive, reliable, and accurate tool for the preoperative prediction of liver metastases after surgery for colorectal cancer. Key Points Question Can a radiomics and clinical fusion model improve the prediction of liver metastases in colorectal cancer and help optimize clinical decision-making ? Findings The presented fusion model combining CT radiomics and clinical data showed superior accuracy in predicting colorectal cancer liver metastases compared to single models . Clinical relevance Our study provides a non-invasive, relatively accurate method for predicting the risk of liver metastasis, improving personalized treatment decisions, and enhancing preoperative planning and prognosis management in colorectal cancer patients .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
11完成签到 ,获得积分10
6秒前
6秒前
浮游应助刘期岜采纳,获得10
7秒前
土豪的摩托完成签到 ,获得积分10
9秒前
Ling发布了新的文献求助10
9秒前
小燕子发布了新的文献求助10
10秒前
ccll发布了新的文献求助20
11秒前
曾经冰露完成签到,获得积分10
11秒前
11秒前
David应助嘻嘻哈哈采纳,获得210
14秒前
LAN完成签到,获得积分20
15秒前
情怀应助火星上念梦采纳,获得10
19秒前
阴雨完成签到 ,获得积分10
20秒前
20秒前
资格丘二完成签到 ,获得积分10
21秒前
Criminology34应助LAN采纳,获得10
23秒前
Sunsets完成签到 ,获得积分10
23秒前
嘻嘻哈哈发布了新的文献求助210
27秒前
archerwangms发布了新的文献求助10
27秒前
Zhao完成签到 ,获得积分10
29秒前
shuhaha完成签到,获得积分10
30秒前
31秒前
31秒前
小燕子完成签到,获得积分10
31秒前
慕青应助DD采纳,获得10
33秒前
34秒前
收皮皮完成签到 ,获得积分10
34秒前
东郭乾完成签到 ,获得积分10
34秒前
所所应助云朵采纳,获得10
35秒前
无语的巨人完成签到 ,获得积分10
35秒前
于庭完成签到,获得积分20
36秒前
小燕子发布了新的文献求助10
36秒前
一条咸鱼发布了新的文献求助10
36秒前
37秒前
一只有上进心的米虫完成签到,获得积分10
43秒前
apollo3232完成签到,获得积分0
44秒前
快乐芷荷完成签到 ,获得积分10
45秒前
Akim应助archerwangms采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426242
求助须知:如何正确求助?哪些是违规求助? 4540046
关于积分的说明 14171474
捐赠科研通 4457840
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435630
关于科研通互助平台的介绍 1413164