Accelerated Screening of Covalent Organic Frameworks for Ethylene Glycol/1,2-Butanediol Separation by Interpretable Machine Learning

乙二醇 分离过程 吸附 材料科学 共价键 选择性 计算机科学 工艺工程 纳米技术 色谱法 化学 催化作用 有机化学 工程类
作者
Yuying Sun,Mengqian Xu,Yunjie Lang,Jing Liu,Dong Zhai,Lei Sun,Wei Deng,Ya‐Min Li,Li Yang
出处
期刊:Journal of Physical Chemistry Letters [American Chemical Society]
卷期号:: 1823-1830
标识
DOI:10.1021/acs.jpclett.4c03333
摘要

The separation of ethylene glycol (EG) and 1,2-butanediol (1,2-BDO) azeotrope in the synthesis process of EG via coal and biomass is becoming increasingly commercial and of environmental importance. Selective adsorption is deemed as the most promising method because of energy savings and environment favorability. In this study, we developed an interpretable decision tree (DT) model to facilitate high-throughput screening of covalent organic frameworks (COFs) as adsorbents for the separation of EG/1,2-BDO mixtures, achieving an R2 value of 0.96. The interpretable decision tree analysis has shown that using the difference in isosteric heat (ΔQst) between EG (Qst-EG) and 1,2-BDO (Qst-BDO), combined with the largest cavity diameter (LCD), is effective for selecting the optimal COFs for EG/1,2-BDO separation. COFs with ΔQst greater than 6.5 kcal/mol and an LCD ranging from 3.6 to 4.8 Å typically exhibit superior performance and can serve as preselection criteria to accelerate the screening process. Six COFs with high EG working capacity and exceptional adsorption selectivity for EG/1,2-BDO were selected using the selection principle. All the selected COFs containing strong electronegative groups. The electronegative groups can significantly amplify the disparity in adsorption strength between EG and 1,2-BDO, thereby boosting separation efficiency. The principles proposed in this work can be used to guide the design of COFs for effective separation of EG and 1,2-BDO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
大成子发布了新的文献求助10
3秒前
4秒前
木木完成签到,获得积分10
6秒前
挑片岛屿发布了新的文献求助10
7秒前
Qintt完成签到 ,获得积分10
7秒前
搜文献的北北完成签到,获得积分10
8秒前
科研通AI2S应助忧郁难胜采纳,获得10
8秒前
wuqi发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
大模型应助月夙采纳,获得10
11秒前
老实寒云发布了新的文献求助10
13秒前
姽婳wy发布了新的文献求助10
15秒前
16秒前
听话的靖柏完成签到 ,获得积分10
16秒前
科研通AI5应助hyh采纳,获得10
17秒前
云烟成雨完成签到,获得积分10
18秒前
S.S.N完成签到 ,获得积分10
18秒前
20秒前
大白不白完成签到,获得积分10
20秒前
传奇3应助科研通管家采纳,获得10
22秒前
22秒前
田様应助科研通管家采纳,获得30
22秒前
共享精神应助科研通管家采纳,获得10
22秒前
aprilvanilla应助科研通管家采纳,获得10
22秒前
yong完成签到,获得积分10
22秒前
HeWang应助科研通管家采纳,获得30
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
打打应助科研通管家采纳,获得10
22秒前
22秒前
CodeCraft应助科研通管家采纳,获得50
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776209
求助须知:如何正确求助?哪些是违规求助? 3321725
关于积分的说明 10207313
捐赠科研通 3036940
什么是DOI,文献DOI怎么找? 1666486
邀请新用户注册赠送积分活动 797492
科研通“疑难数据库(出版商)”最低求助积分说明 757868