Metabolomics data improve 10-year cardiovascular risk prediction with the SCORE2 algorithm for the general population without cardiovascular disease or diabetes

医学 狼牙棒 代谢组学 人口 生物标志物 内科学 糖尿病 疾病 生物信息学 内分泌学 心肌梗塞 生物 传统PCI 生物化学 环境卫生
作者
Ruijie Xie,Sha Sha,Lei Peng,Bernd Holleczek,Hermann Brenner,Ben Schöttker
出处
期刊:European Journal of Preventive Cardiology [Oxford University Press]
标识
DOI:10.1093/eurjpc/zwaf254
摘要

Abstract Background and Aims The value of metabolomic biomarkers for cardiovascular risk prediction is unclear. This study aimed to evaluate the potential of improved prediction of the 10-year risk of major adverse cardiovascular events (MACE) in large population-based cohorts by adding metabolomic biomarkers to the novel SCORE2 model, which was introduced in 2021 for the European population without previous cardiovascular disease or diabetes. Methods Data from 187,039 and 5,578 participants from the UK Biobank (UKB) and the German ESTHER cohort, respectively, were used for model derivation, internal and external validation. A total of 249 metabolites were measured with nuclear magnetic resonance (NMR) spectroscopy. LASSO regression with bootstrapping was used to identify metabolites in sex-specific analyses and the predictive performance of metabolites added to the SCORE2 model was primarily evaluated with Harrell's C-index. Results Thirteen metabolomic biomarkers were selected by LASSO regression for enhanced MACE risk prediction (three for both sexes, six male- and four female-specific metabolites) in the UKB derivation set. In internal validation with the UKB, adding the selected metabolites to the SCORE2 model increased the C-index statistically significantly (P<0.001) from 0.691 to 0.710. In external validation with ESTHER, the C-index increase was similar (from 0.673 to 0.688, P=0.042). The inflammation biomarker, glycoprotein acetyls, contributed the most to the increased C-index in both men and women. Conclusions The integration of metabolomic biomarkers into the SCORE2 model markedly improves the prediction of 10-year cardiovascular risk. With recent advancements in reducing costs and standardizing processes, NMR metabolomics holds considerable promise for implementation in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tectextey发布了新的文献求助10
刚刚
刚刚
jxc完成签到,获得积分10
1秒前
zan12131完成签到,获得积分10
2秒前
zan12131发布了新的文献求助10
4秒前
欣喜谷槐发布了新的文献求助20
6秒前
思源应助刘雨森采纳,获得10
6秒前
刘亚赛发布了新的文献求助80
6秒前
FIN应助paulmichael采纳,获得10
8秒前
晓生完成签到,获得积分10
10秒前
Jasper应助zhixiang采纳,获得10
12秒前
123完成签到,获得积分10
14秒前
搞对发布了新的文献求助10
15秒前
stacy发布了新的文献求助10
15秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
陈建完成签到,获得积分10
18秒前
开心的勇敢完成签到,获得积分10
20秒前
李健应助66m37采纳,获得10
20秒前
20秒前
21秒前
21秒前
务实盼波发布了新的文献求助10
23秒前
24秒前
27秒前
guangshuang发布了新的文献求助10
28秒前
火华发布了新的文献求助10
29秒前
30秒前
沉默是金12完成签到 ,获得积分10
31秒前
张张爱科研完成签到,获得积分10
34秒前
34秒前
鹤舞乾坤完成签到,获得积分10
36秒前
37秒前
火华完成签到,获得积分10
38秒前
量子星尘发布了新的文献求助10
39秒前
39秒前
万能图书馆应助Anonymous采纳,获得30
40秒前
huangyue发布了新的文献求助10
40秒前
41秒前
王治焕应助努力发论文采纳,获得10
41秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Astrochemistry 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874440
求助须知:如何正确求助?哪些是违规求助? 3416743
关于积分的说明 10700368
捐赠科研通 3140985
什么是DOI,文献DOI怎么找? 1733093
邀请新用户注册赠送积分活动 835740
科研通“疑难数据库(出版商)”最低求助积分说明 782206