Metabolomics data improve 10-year cardiovascular risk prediction with the SCORE2 algorithm for the general population without cardiovascular disease or diabetes

医学 狼牙棒 代谢组学 人口 生物标志物 内科学 糖尿病 疾病 生物信息学 内分泌学 心肌梗塞 生物 传统PCI 生物化学 环境卫生
作者
Ruijie Xie,Sha Sha,Lei Peng,Bernd Holleczek,Hermann Brenner,Ben Schöttker
出处
期刊:European Journal of Preventive Cardiology [Oxford University Press]
被引量:4
标识
DOI:10.1093/eurjpc/zwaf254
摘要

Abstract Aims The value of metabolomic biomarkers for cardiovascular risk prediction is unclear. This study aimed to evaluate the potential of improved prediction of the 10-year risk of major adverse cardiovascular events (MACE) in large population-based cohorts by adding metabolomic biomarkers to the novel SCORE2 model, which was introduced in 2021 for the European population without previous cardiovascular disease or diabetes. Methods and results Data from 187 039 and 5578 participants from the UK Biobank (UKB) and the German ESTHER cohort, respectively, were used for model derivation and internal and external validation. A total of 249 metabolites were measured with nuclear magnetic resonance (NMR) spectroscopy. Least Absolute Shrinkage and Selection Operator (LASSO) regression with bootstrapping was used to identify metabolites in sex-specific analyses, and the predictive performance of metabolites added to the SCORE2 model was primarily evaluated with Harrell’s C-index. Thirteen metabolomic biomarkers were selected by LASSO regression for enhanced MACE risk prediction (three for both sexes, six male-specific metabolite, and four female-specific metabolites) in the UKB derivation set. In internal validation with the UKB, adding the selected metabolites to the SCORE2 model increased the C-index statistically significantly (P < 0.001) from 0.691 to 0.710. In external validation with ESTHER, the C-index increase was similar (from 0.673 to 0.688, P = 0.042). The inflammation biomarker, glycoprotein acetyls, contributed the most to the increased C-index in both men and women. Conclusion The integration of metabolomic biomarkers into the SCORE2 model markedly improves the prediction of 10-year cardiovascular risk. With recent advancements in reducing costs and standardizing processes, NMR metabolomics holds considerable promise for implementation in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智凝海发布了新的文献求助10
1秒前
科研通AI2S应助美好凡阳采纳,获得10
1秒前
1秒前
荒芜完成签到,获得积分10
1秒前
Lllll发布了新的文献求助10
2秒前
墨绝发布了新的文献求助10
2秒前
呆萌鱼完成签到,获得积分10
2秒前
天天快乐应助yn采纳,获得10
3秒前
666发布了新的文献求助10
3秒前
优秀的寒安完成签到,获得积分20
3秒前
斗转星移发布了新的文献求助10
3秒前
易yi发布了新的文献求助10
3秒前
XiAnZH发布了新的文献求助10
3秒前
师霸发布了新的文献求助10
3秒前
明亮白山发布了新的文献求助10
4秒前
大个应助lalala采纳,获得10
4秒前
4秒前
yznfly应助lifesci_ming采纳,获得340
4秒前
西河发布了新的文献求助10
5秒前
5秒前
绝不延毕完成签到 ,获得积分10
5秒前
lu完成签到,获得积分10
5秒前
5秒前
拉长的靖雁完成签到,获得积分10
6秒前
orixero应助胖大海采纳,获得10
6秒前
7秒前
沉静孤晴发布了新的文献求助10
8秒前
8秒前
科研通AI6应助闪电先生采纳,获得10
8秒前
星辰大海应助张佳星采纳,获得10
9秒前
酿雪成春完成签到,获得积分10
9秒前
9秒前
9秒前
科研民工发布了新的文献求助10
9秒前
西柚发布了新的文献求助10
10秒前
10秒前
Liam发布了新的文献求助10
10秒前
11秒前
Ava应助HK采纳,获得10
11秒前
小鹿发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668461
求助须知:如何正确求助?哪些是违规求助? 4890899
关于积分的说明 15124429
捐赠科研通 4827351
什么是DOI,文献DOI怎么找? 2584580
邀请新用户注册赠送积分活动 1538453
关于科研通互助平台的介绍 1496742