Bi-Modality Individual-Aware Prompt Tuning for Visual-Language Model

计算机科学 模态(人机交互) 人工智能 计算机视觉 自然语言处理
作者
Hantao Yao,Rui Zhang,Haochang Lyu,Yongdong Zhang,Changsheng Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (8): 6352-6368 被引量:1
标识
DOI:10.1109/tpami.2025.3557780
摘要

Prompt tuning is a valuable technique for adapting visual language models (VLMs) to different downstream tasks, such as domain generalization and learning from a few examples. Previous methods have utilized Context Optimization approaches to deduce domain-shared or cross-modality prompt tokens, which enhance generalization and discriminative ability in textual or visual contexts. However, these prompt tokens, inferred from training data, cannot adapt perfectly to the distribution of the test dataset. This work introduces a novel approach called Bi-modality Individual-aware Prompt Tuning (BIP) by explicitly incorporating the individual's essential prior knowledge into the learnable prompt to enhance their discriminability and generalization. The critical insight of BIP involves applying the Textual Knowledge Embedding (TKE) and Visual Knowledge Embedding (VKE) models to project the class-aware textual essential knowledge and the instance-aware essential knowledge into the class-aware prompt and instance-aware prompt, referred to as Textual-level Class-aware Prompt tuning (TCP) and Visual-level Instance-aware Prompt tuning (VIP). On the one hand, TCP integrates the generated class-aware prompts into the Text Encoder to produce a dynamic class-aware classifier to improve generalization on unseen domains. On the other hand, VIP uses the instance-aware prompt to generate the dynamic visual embedding of each instance, thereby enhancing the discriminative capability of visual embedding. Comprehensive evaluations demonstrate that BIP can be used as a plug-and-play module easily integrated with existing methods and achieves superior performance on 15 benchmarks across four tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
李健的小迷弟应助feng采纳,获得10
刚刚
刚刚
shichen完成签到 ,获得积分10
1秒前
小李新人完成签到 ,获得积分10
1秒前
xifanfan发布了新的文献求助10
2秒前
Maestro_S应助暴发户采纳,获得30
2秒前
Maestro_S应助暴发户采纳,获得30
2秒前
3秒前
威武大楚发布了新的文献求助30
4秒前
于富强发布了新的文献求助30
4秒前
6秒前
Mic应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得30
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
自由硬币应助科研通管家采纳,获得50
6秒前
浮游应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
阳光应助科研通管家采纳,获得10
6秒前
脑洞疼应助MDW采纳,获得10
6秒前
阳光应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
squrreil发布了新的文献求助10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
阳光应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497067
求助须知:如何正确求助?哪些是违规求助? 4594645
关于积分的说明 14445643
捐赠科研通 4527258
什么是DOI,文献DOI怎么找? 2480805
邀请新用户注册赠送积分活动 1465195
关于科研通互助平台的介绍 1437899