材料科学
电极
制作
粒径
电化学
泥浆
多孔性
极限抗拉强度
粒子(生态学)
纳米技术
复合材料
储能
化学工程
化学
物理化学
工程类
医学
功率(物理)
替代医学
海洋学
物理
病理
量子力学
地质学
作者
Junlin Wu,Wei Tang,Haoqing Yang,Dong Ju Lee,Dapeng Xu,Feng Li,Jianting Qin,Sihyun Kim,Hongpeng Gao,Yuju Jeon,Duc Tran,Yu‐Ting Chen,Anthony U. Mu,Wenjuan Bian,Hongtao Sun,Zheng Chen
出处
期刊:Small
[Wiley]
日期:2025-04-21
标识
DOI:10.1002/smll.202501504
摘要
Abstract Dry‐process fabrication using fibrillatable binder is emerging as a promising method to produce high‐loading electrodes for energy storage applications, favored by its cost‐efficiency and eco‐friendliness. While previous studies have demonstrated the advantages of dry process over the traditional slurry method, there remains a gap in understanding how the particle size of active materials influences the mechanical and electrochemical performance of dry electrodes. In this study, four different particle size NaCrO 2 materials (Average size, S‐NCO: 0.6 µm, M1‐NCO 1.5 µm, M2‐NCO: 4.4 µm, and L‐NCO: 9.9 µm) are synthesized to investigate the effect of particle size on dry‐processed high‐loading electrodes. The findings reveal that the larger micron‐sized (>4.4 µm) NCO dry films exhibit significantly improved tensile strength and electrochemical performance, primarily ascribed to the low film porosity, abundant inter‐particle connection by the binder, comprehensive carbon coverage, and efficient percolation of the conductive pathway. Notably, a full cell incorporated with a high loading (5.2 mAh cm − 2 ) and high active material ratio (96.5 wt.%) L‐NCO film electrode demonstrates promising cycling stability and rate capability. These results provide valuable insights regarding the design and fabrication of dry‐processed electrodes for future energy storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI