Research on gas turbine health assessment method based on physical prior knowledge and spatial-temporal graph neural network

人工神经网络 燃气轮机 图形 计算机科学 人工智能 机器学习 工程类 理论计算机科学 机械工程
作者
Kanru Cheng,Kunyu Zhang,Yuzhang Wang,Chaoran Yang,Jiao Li,Yueheng Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:367: 123419-123419 被引量:19
标识
DOI:10.1016/j.apenergy.2024.123419
摘要

Health management plays a significant role in preserving the reliability and safety of gas turbines. An accurate assessment of the health status of gas turbines is critical for the realization of predictive health management. However, existing health assessment methods do not take into account the physical relationships and spatial states within the system. The focus of this study is to establish a methodology that can concurrently utilize physical relationships and data for the quantitative assessment of gas turbine health. This study proposes a novel Physical Spatial-Temporal Graph Convolutional Network (Phy-STGCN) approach that combines prior physical knowledge with data-driven techniques by incorporating the structural and operational mechanisms of gas turbine into a graph-based model. First, the concept of gas turbine health is defined, followed by the validation of the rationality behind health classification. Second, a temporal graph construction method based on K-nearest neighbor and prior physical knowledge is introduced. Third, a network architecture based on graph neural networks is proposed to incorporate the temporal and spatial dependencies present in the data. The proposed method is validated using gas turbine data, achieving a health assessment accuracy of 90.8%. At the initial stages of health degradation, the assessment accuracy can exceed 98.9%. Through a series of comparative and ablation experiments, the efficacy of the Phy-STGCN method in gas turbine health assessment is further substantiated. These results demonstrate that the proposed method can effectively leverage prior physical knowledge and the spatial coupling information between data, realizing a quantitative mapping from multi-source monitorable data to system states. This study provides insights for research on health assessment methods that integrate physical and data-driven approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
小王发布了新的文献求助10
刚刚
2秒前
3秒前
SCI完成签到,获得积分10
3秒前
btyyl完成签到,获得积分10
3秒前
木雨亦潇潇完成签到,获得积分10
4秒前
满座完成签到,获得积分10
4秒前
浮游应助Jeffery426采纳,获得10
4秒前
药化的彦祖完成签到,获得积分10
4秒前
Inovation应助王雨馨采纳,获得20
5秒前
zsp完成签到 ,获得积分10
6秒前
huiseXT完成签到,获得积分10
7秒前
yue发布了新的文献求助10
7秒前
深情安青应助美好的千凝采纳,获得10
7秒前
10秒前
wanci应助明亮访烟采纳,获得10
11秒前
从容的无心完成签到,获得积分10
12秒前
12秒前
yinhaoran完成签到,获得积分10
12秒前
CodeCraft应助yangts2021采纳,获得10
12秒前
食虫蚁完成签到 ,获得积分10
12秒前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
14秒前
浮游应助hkh采纳,获得10
14秒前
彭于晏应助hkh采纳,获得10
14秒前
Akim应助hkh采纳,获得10
14秒前
无花果应助hkh采纳,获得10
14秒前
14秒前
15秒前
fluttershy完成签到 ,获得积分10
17秒前
懵懂的明辉完成签到,获得积分10
18秒前
苏轼完成签到,获得积分10
19秒前
美好的千凝完成签到,获得积分10
19秒前
FooLeup立仔完成签到,获得积分10
20秒前
张津浩完成签到,获得积分10
21秒前
22秒前
绿兔子完成签到,获得积分10
22秒前
23秒前
大模型应助HIT_C采纳,获得30
23秒前
Wuyx完成签到 ,获得积分10
25秒前
美好斓应助heyong采纳,获得100
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494500
求助须知:如何正确求助?哪些是违规求助? 4592204
关于积分的说明 14435774
捐赠科研通 4524964
什么是DOI,文献DOI怎么找? 2479143
邀请新用户注册赠送积分活动 1463989
关于科研通互助平台的介绍 1437021