清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Research on gas turbine health assessment method based on physical prior knowledge and spatial-temporal graph neural network

人工神经网络 燃气轮机 图形 计算机科学 人工智能 机器学习 工程类 理论计算机科学 机械工程
作者
Kanru Cheng,Kunyu Zhang,Yuzhang Wang,Chaoran Yang,Jiao Li,Yueheng Wang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:367: 123419-123419 被引量:3
标识
DOI:10.1016/j.apenergy.2024.123419
摘要

Health management plays a significant role in preserving the reliability and safety of gas turbines. An accurate assessment of the health status of gas turbines is critical for the realization of predictive health management. However, existing health assessment methods do not take into account the physical relationships and spatial states within the system. The focus of this study is to establish a methodology that can concurrently utilize physical relationships and data for the quantitative assessment of gas turbine health. This study proposes a novel Physical Spatial-Temporal Graph Convolutional Network (Phy-STGCN) approach that combines prior physical knowledge with data-driven techniques by incorporating the structural and operational mechanisms of gas turbine into a graph-based model. First, the concept of gas turbine health is defined, followed by the validation of the rationality behind health classification. Second, a temporal graph construction method based on K-nearest neighbor and prior physical knowledge is introduced. Third, a network architecture based on graph neural networks is proposed to incorporate the temporal and spatial dependencies present in the data. The proposed method is validated using gas turbine data, achieving a health assessment accuracy of 90.8%. At the initial stages of health degradation, the assessment accuracy can exceed 98.9%. Through a series of comparative and ablation experiments, the efficacy of the Phy-STGCN method in gas turbine health assessment is further substantiated. These results demonstrate that the proposed method can effectively leverage prior physical knowledge and the spatial coupling information between data, realizing a quantitative mapping from multi-source monitorable data to system states. This study provides insights for research on health assessment methods that integrate physical and data-driven approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪仔5号完成签到 ,获得积分10
7秒前
huanghe完成签到,获得积分10
12秒前
万能图书馆应助xingsixs采纳,获得200
13秒前
19秒前
zhouleiwang完成签到,获得积分10
20秒前
稻子完成签到 ,获得积分10
46秒前
1分钟前
欣心发布了新的文献求助10
1分钟前
丹妮完成签到 ,获得积分10
1分钟前
明理囧完成签到 ,获得积分10
1分钟前
SCI的芷蝶完成签到 ,获得积分10
1分钟前
科研通AI2S应助欣心采纳,获得10
2分钟前
knight7m完成签到 ,获得积分10
2分钟前
Hululu完成签到 ,获得积分10
2分钟前
无悔完成签到 ,获得积分10
2分钟前
甜乎贝贝完成签到 ,获得积分10
2分钟前
zzhui完成签到,获得积分10
3分钟前
LX完成签到 ,获得积分10
3分钟前
tong完成签到,获得积分10
3分钟前
alan完成签到 ,获得积分10
3分钟前
大头完成签到 ,获得积分10
4分钟前
Air完成签到 ,获得积分10
4分钟前
CipherSage应助科研通管家采纳,获得10
4分钟前
在水一方完成签到 ,获得积分10
4分钟前
yellowonion完成签到 ,获得积分10
4分钟前
重景完成签到 ,获得积分10
4分钟前
沙海沉戈完成签到,获得积分0
5分钟前
不良帅完成签到,获得积分10
5分钟前
可乐完成签到,获得积分10
5分钟前
开心每一天完成签到 ,获得积分10
5分钟前
酷波er应助钱念波采纳,获得10
5分钟前
青出于蓝蔡完成签到,获得积分10
5分钟前
Dave完成签到,获得积分10
5分钟前
5分钟前
钱念波发布了新的文献求助10
6分钟前
蚂蚁踢大象完成签到 ,获得积分10
6分钟前
back you up应助科研通管家采纳,获得30
6分钟前
l老王完成签到 ,获得积分10
6分钟前
顾矜应助钱念波采纳,获得10
6分钟前
zhilianghui0807完成签到 ,获得积分10
6分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798505
求助须知:如何正确求助?哪些是违规求助? 3344044
关于积分的说明 10318383
捐赠科研通 3060575
什么是DOI,文献DOI怎么找? 1679695
邀请新用户注册赠送积分活动 806746
科研通“疑难数据库(出版商)”最低求助积分说明 763340